species.read package

Submodules

species.read.read_calibration module

Module with reading functionalities for calibration spectra.

class species.read.read_calibration.ReadCalibration(tag: str, filter_name: Optional[str] = None)[source]

Bases: object

Class for reading a calibration spectrum from the database.

Parameters
  • tag (str) – Database tag of the calibration spectrum.

  • filter_name (str, None) – Filter that is used for the wavelength range. The full spectrum is read if the argument is set to None.

Returns

None

Return type

NoneType

get_flux(model_param: Optional[Dict[str, float]] = None) Tuple[float, float][source]

Function for calculating the average flux for the filter_name.

Parameters

model_param (dict, None) – Model parameters. Should contain the ‘scaling’ value. Not used if set to None.

Returns

  • float – Average flux (W m-2 um-1).

  • float – Uncertainty (W m-2 um-1).

get_magnitude(model_param: Optional[Dict[str, float]] = None, distance: Optional[Tuple[float, float]] = None) Tuple[Tuple[float, Optional[float]], Tuple[Optional[float], Optional[float]]][source]

Function for calculating the apparent magnitude for the filter_name.

Parameters
  • model_param (dict, None) – Model parameters. Should contain the ‘scaling’ value. Not used if set to None.

  • distance (tuple(float, float), None) – Distance and uncertainty to the calibration object (pc). Not used if set to None, in which case the returned absolute magnitude is (None, None).

Returns

  • tuple(float, float) – Apparent magnitude and uncertainty.

  • tuple(float, float), tuple(None, None) – Absolute magnitude and uncertainty.

get_spectrum(model_param: Optional[Dict[str, float]] = None, apply_mask: bool = False, spec_res: Optional[float] = None, extrapolate: bool = False, min_wavelength: Optional[float] = None) species.core.box.SpectrumBox[source]

Function for selecting the calibration spectrum.

Parameters
  • model_param (dict, None) – Model parameters. Should contain the ‘scaling’ value. Not used if set to None.

  • apply_mask (bool) – Exclude negative values and NaN values.

  • spec_res (float, None) – Spectral resolution. Original wavelength points are used if set to None.

  • extrapolate (bool) – Extrapolate to 6 um by fitting a power law function.

  • min_wavelength (float, None) – Minimum wavelength used for fitting the power law function. All data is used if set to None.

Returns

Box with the spectrum.

Return type

species.core.box.SpectrumBox

resample_spectrum(wavel_points: numpy.ndarray, model_param: Optional[Dict[str, float]] = None, spec_res: Optional[float] = None, apply_mask: bool = False) species.core.box.SpectrumBox[source]

Function for resampling the spectrum and optional uncertainties onto a new wavelength grid.

Parameters
  • wavel_points (np.ndarray) – Wavelengths (um).

  • model_param (dict, None) – Dictionary with the model parameters, which should only contain the 'scaling' keyword. No scaling is applied if the argument of model_param is set to None.

  • spec_res (float, None) – Spectral resolution that is used for smoothing the spectrum before resampling the wavelengths. No smoothing is applied if the argument is set to None. The smoothing can only be applied ti spectra with a constant spectral resolution (which is the case for all model spectra that are compatible with species) or a constant wavelength spacing. The first smoothing approach is fastest.

  • apply_mask (bool) – Exclude negative values and NaNs.

Returns

Box with the resampled spectrum.

Return type

species.core.box.SpectrumBox

species.read.read_color module

species.read.read_filter module

Module with reading functionalities for filter profiles.

class species.read.read_filter.ReadFilter(filter_name: str)[source]

Bases: object

Class for reading a filter profile from the database.

Parameters

filter_name (str) – Filter name as stored in the database. Filter names from the SVO Filter Profile Service will be automatically downloaded, stored in the database, and read from the database.

Returns

None

Return type

NoneType

detector_type() str[source]

Return the detector type.

Returns

Detector type (‘energy’ or ‘photon’).

Return type

str

effective_width() numpy.float32[source]

Calculate the effective width of the filter profile. The effective width is equivalent to the horizontal size of a rectangle with height equal to the maximum transmission and with the same area as the one covered by the filter profile.

Returns

Effective width (um).

Return type

float

filter_fwhm() float[source]

Calculate the full width at half maximum (FWHM) of the filter profile.

Returns

Full width at half maximum (um).

Return type

float

get_filter() numpy.ndarray[source]

Function for selecting a filter profile from the database.

Returns

Array with the wavelengths and filter transmission.

Return type

np.ndarray

interpolate_filter() scipy.interpolate.interpolate.interp1d[source]

Function for linearly interpolating a filter profile.

Returns

Linearly interpolated filter.

Return type

scipy.interpolate.interpolate.interp1d

mean_wavelength() Union[numpy.float32, numpy.float64][source]

Calculate the weighted mean wavelength of the filter profile.

Returns

Mean wavelength (um).

Return type

float

wavelength_range() Tuple[Union[numpy.float32, numpy.float64], Union[numpy.float32, numpy.float64]][source]

Extract the wavelength range of the filter profile.

Returns

  • float – Minimum wavelength (um).

  • float – Maximum wavelength (um).

species.read.read_isochrone module

Module with reading functionalities for isochrones.

class species.read.read_isochrone.ReadIsochrone(tag: str)[source]

Bases: object

Class for reading isochrone data from the database.

Parameters

tag (str) – Database tag of the isochrone data.

Returns

None

Return type

NoneType

get_color_color(age: float, masses: numpy.ndarray, model: str, filters_colors: Tuple[Tuple[str, str], Tuple[str, str]]) species.core.box.ColorColorBox[source]

Function for calculating color-magnitude combinations from a selected isochrone.

Parameters
  • age (float) – Age (Myr) at which the isochrone data is interpolated.

  • masses (np.ndarray) – Masses (Mjup) at which the isochrone data is interpolated.

  • model (str) – Atmospheric model used to compute the synthetic photometry.

  • filters_colors (tuple(tuple(str, str), tuple(str, str))) – Filter names for the colors as listed in the file with the isochrone data. The filter names should be provided in the format of the SVO Filter Profile Service.

Returns

Box with the color-color data.

Return type

species.core.box.ColorColorBox

get_color_magnitude(age: float, masses: numpy.ndarray, model: str, filters_color: Tuple[str, str], filter_mag: str, adapt_logg: bool = False) species.core.box.ColorMagBox[source]

Function for calculating color-magnitude combinations from a selected isochrone.

Parameters
  • age (float) – Age (Myr) at which the isochrone data is interpolated.

  • masses (np.ndarray) – Masses (Mjup) at which the isochrone data is interpolated.

  • model (str) – Atmospheric model used to compute the synthetic photometry.

  • filters_color (tuple(str, str)) – Filter names for the color as listed in the file with the isochrone data. The filter names should be provided in the format of the SVO Filter Profile Service.

  • filter_mag (str) – Filter name for the absolute magnitude as listed in the file with the isochrone data. The value should be equal to one of the filters_color values.

  • adapt_logg (bool) – Adapt \(\log(g)\) to the upper or lower boundary of the atmospheric model grid whenever the \(\log(g)\) that has been calculated from the isochrone mass and radius lies outside the available range of the synthetic spectra. Typically \(\log(g)\) has only a minor impact on the broadband magnitudes and colors.

Returns

Box with the color-magnitude data.

Return type

species.core.box.ColorMagBox

get_isochrone(age: float, masses: numpy.ndarray, filters_color: Optional[Tuple[str, str]] = None, filter_mag: Optional[str] = None) species.core.box.IsochroneBox[source]

Function for selecting an isochrone.

Parameters
  • age (float) – Age (Myr) at which the isochrone data is interpolated.

  • masses (np.ndarray) – Masses (Mjup) at which the isochrone data is interpolated.

  • filters_color (tuple(str, str), None) – Filter names for the color as listed in the file with the isochrone data. Not selected if set to None or if only evolutionary tracks are available.

  • filter_mag (str, None) – Filter name for the absolute magnitude as listed in the file with the isochrone data. Not selected if set to None or if only evolutionary tracks are available.

Returns

Box with the isochrone.

Return type

species.core.box.IsochroneBox

species.read.read_model module

Module with reading functionalities for atmospheric model spectra.

class species.read.read_model.ReadModel(model: str, wavel_range: Optional[Tuple[float, float]] = None, filter_name: Optional[str] = None)[source]

Bases: object

Class for reading a model spectrum from the database.

Parameters
  • model (str) – Name of the atmospheric model.

  • wavel_range (tuple(float, float), None) – Wavelength range (um). Full spectrum is selected if set to None. Not used if filter_name is not None.

  • filter_name (str, None) – Filter name that is used for the wavelength range. The wavel_range is used if set to None.

Returns

None

Return type

NoneType

static apply_ext_ism(wavelengths: numpy.ndarray, flux: numpy.ndarray, v_band_ext: float, v_band_red: float) numpy.ndarray[source]

Internal function for applying ISM extinction to a spectrum.

wavelengthsnp.ndarray

Wavelengths (um) of the spectrum.

fluxnp.ndarray

Fluxes (W m-2 um-1) of the spectrum.

v_band_extfloat

Extinction (mag) in the V band.

v_band_redfloat

Reddening in the V band.

Returns

Fluxes (W m-2 um-1) with the extinction applied.

Return type

np.ndarray

static apply_lognorm_ext(wavelength: numpy.ndarray, flux: numpy.ndarray, radius_interp: float, sigma_interp: float, v_band_ext: float) numpy.ndarray[source]

Internal function for applying extinction by dust to a spectrum.

wavelengthnp.ndarray

Wavelengths (um) of the spectrum.

fluxnp.ndarray

Fluxes (W m-2 um-1) of the spectrum.

radius_interpfloat

Logarithm of the mean geometric radius (um) of the log-normal size distribution.

sigma_interpfloat

Geometric standard deviation (dimensionless) of the log-normal size distribution.

v_band_extfloat

The extinction (mag) in the V band.

Returns

Fluxes (W m-2 um-1) with the extinction applied.

Return type

np.ndarray

static apply_powerlaw_ext(wavelength: numpy.ndarray, flux: numpy.ndarray, r_max_interp: float, exp_interp: float, v_band_ext: float) numpy.ndarray[source]

Internal function for applying extinction by dust to a spectrum.

wavelengthnp.ndarray

Wavelengths (um) of the spectrum.

fluxnp.ndarray

Fluxes (W m-2 um-1) of the spectrum.

r_max_interpfloat

Maximum radius (um) of the power-law size distribution.

exp_interpfloat

Exponent of the power-law size distribution.

v_band_extfloat

The extinction (mag) in the V band.

Returns

Fluxes (W m-2 um-1) with the extinction applied.

Return type

np.ndarray

get_bounds() Dict[str, Tuple[float, float]][source]

Function for extracting the grid boundaries.

Returns

Boundaries of parameter grid.

Return type

dict

get_data(model_param: Dict[str, float], spec_res: Optional[float] = None, wavel_resample: Optional[numpy.ndarray] = None) species.core.box.ModelBox[source]

Function for selecting a model spectrum (without interpolation) for a set of parameter values that coincide with the grid points. The stored grid points can be inspected with get_points().

Parameters
  • model_param (dict) – Model parameters and values. Only discrete values from the original grid are possible. Else, the nearest grid values are selected.

  • spec_res (float, None) – Spectral resolution that is used for smoothing the spectrum with a Gaussian kernel. No smoothing is applied to the spectrum if the argument is set to None.

  • wavel_resample (np.ndarray, None) – Wavelength points (um) to which the spectrum will be resampled. In that case, spec_res can still be used for smoothing the spectrum with a Gaussian kernel. The original wavelength points are used if the argument is set to None.

Returns

Box with the model spectrum.

Return type

species.core.box.ModelBox

get_flux(model_param: Dict[str, float], synphot=None)[source]

Function for calculating the average flux density for the filter_name.

Parameters
Returns

  • float – Average flux (W m-2 um-1).

  • float, None – Uncertainty (W m-2 um-1), which is set to None.

get_magnitude(model_param: Dict[str, float]) Tuple[Optional[float], Optional[float]][source]

Function for calculating the apparent and absolute magnitudes for the filter_name.

Parameters

model_param (dict) – Dictionary with the model parameters. A radius (Rjup) and distance (pc) are required for the apparent magnitude (i.e. to scale the flux from the planet to the observer). Only a radius is required for the absolute magnitude.

Returns

  • float – Apparent magnitude. A None is returned if the dictionary of model_param does not contain a radius and distance.

  • float, None – Absolute magnitude. A None is returned if the dictionary of model_param does not contain a radius.

get_model(model_param: Dict[str, float], spec_res: Optional[float] = None, wavel_resample: Optional[numpy.ndarray] = None, magnitude: bool = False, smooth: bool = False) species.core.box.ModelBox[source]

Function for extracting a model spectrum by linearly interpolating the model grid.

Parameters
  • model_param (dict) – Dictionary with the model parameters and values. The values should be within the boundaries of the grid. The grid boundaries of the spectra in the database can be obtained with get_bounds().

  • spec_res (float, None) – Spectral resolution that is used for smoothing the spectrum with a Gaussian kernel when smooth=True. The wavelengths will be resampled to the argument of spec_res if smooth=False.

  • wavel_resample (np.ndarray, None) – Wavelength points (um) to which the spectrum is resampled. In that case, spec_res can still be used for smoothing the spectrum with a Gaussian kernel. The original wavelength points are used if the argument is set to None.

  • magnitude (bool) – Normalize the spectrum with a flux calibrated spectrum of Vega and return the magnitude instead of flux density.

  • smooth (bool) – If True, the spectrum is smoothed with a Gaussian kernel to the spectral resolution of spec_res. This requires either a uniform spectral resolution of the input spectra (fast) or a uniform wavelength spacing of the input spectra (slow).

Returns

Box with the model spectrum.

Return type

species.core.box.ModelBox

get_parameters() List[str][source]

Function for extracting the parameter names.

Returns

Model parameters.

Return type

list(str)

get_points() Dict[str, numpy.ndarray][source]

Function for extracting the grid points.

Returns

Parameter points of the model grid.

Return type

dict

get_spec_res() float[source]

Function for extracting the spectral resolution as stored in the database.

Returns

Spectral resolution.

Return type

float

get_wavelengths() numpy.ndarray[source]

Function for extracting the wavelength points.

Returns

Wavelength points (um).

Return type

np.ndarray

interpolate_grid(wavel_resample: Optional[numpy.ndarray] = None, smooth: bool = False, spec_res: Optional[float] = None) None[source]

Internal function for linearly interpolating the grid of model spectra for a given filter or wavelength sampling.

wavel_resamplenp.ndarray, None

Wavelength points for the resampling of the spectrum. The filter_name is used if set to None.

smoothbool

Smooth the spectrum with a Gaussian line spread function. Only recommended in case the input wavelength sampling has a uniform spectral resolution.

spec_resfloat

Spectral resolution that is used for the Gaussian filter when smooth=True.

Returns

None

Return type

NoneType

interpolate_model() None[source]

Internal function for linearly interpolating the full grid of model spectra.

Returns

None

Return type

NoneType

open_database() h5py._hl.files.File[source]

Internal function for opening the species database.

Returns

The HDF5 database.

Return type

h5py._hl.files.File

wavelength_points(hdf5_file: h5py._hl.files.File) Tuple[numpy.ndarray, numpy.ndarray][source]

Internal function for extracting the wavelength points and indices that are used.

Parameters

hdf5_file (h5py._hl.files.File) – The HDF5 database.

Returns

  • np.ndarray – Wavelength points (um).

  • np.ndarray – Array with the size of the original wavelength grid. The booleans indicate if a wavelength point was used.

species.read.read_object module

Module with reading functionalities for data from individual objects.

class species.read.read_object.ReadObject(object_name: str)[source]

Bases: object

Class for reading data from an individual object from the database.

Parameters

object_name (str) – Object name as stored in the database (e.g. ‘beta Pic b’, ‘PZ Tel B’).

Returns

None

Return type

NoneType

get_absmag(filter_name: str) Union[Tuple[float, Optional[float]], Tuple[numpy.ndarray, Optional[numpy.ndarray]]][source]

Function for calculating the absolute magnitudes of the object from the apparent magnitudes and distance. The errors on the apparent magnitude and distance are propagated into an error on the absolute magnitude.

Parameters

filter_name (str) – Filter name.

Returns

  • float, np.ndarray – Absolute magnitude.

  • float, np.ndarray – Error on the absolute magnitude.

get_distance() Tuple[float, float][source]

Function for reading the distance to the object.

Returns

  • float – Distance (pc).

  • float – Uncertainty (pc).

get_photometry(filter_name: str) numpy.ndarray[source]

Function for reading the photometry of the object.

Parameters

filter_name (str) – Filter ID.

Returns

Apparent magnitude, magnitude error (error), flux (W m-2 um-1), flux error (W m-2 um-1).

Return type

np.ndarray

get_spectrum() dict[source]

Function for reading the spectra and covariance matrices of the object.

Returns

Dictionary with spectra and covariance matrices.

Return type

dict

species.read.read_planck module

Module with reading functionalities for Planck spectra.

class species.read.read_planck.ReadPlanck(wavel_range: Optional[Tuple[Union[float, numpy.float32], Union[float, numpy.float32]]] = None, filter_name: Optional[str] = None)[source]

Bases: object

Class for reading a Planck spectrum.

Parameters
  • wavel_range (tuple(float, float), None) – Wavelength range (um). A wavelength range of 0.1-1000 um is used if set to None. Not used if filter_name is not None.

  • filter_name (str, None) – Filter name that is used for the wavelength range. The wavel_range is used if set to None.

Returns

None

Return type

NoneType

static get_color_color(temperatures: numpy.ndarray, radius: float, filters_colors: Tuple[Tuple[str, str], Tuple[str, str]]) species.core.box.ColorColorBox[source]

Function for calculating two colors in the range of 100-10000 K.

Parameters
  • temperatures (np.ndarray) – Temperatures (K) for which the colors are calculated.

  • radius (float) – Radius (Rjup).

  • filters_colors (tuple(tuple(str, str), tuple(str, str))) – Two tuples with the filter names for the colors.

Returns

Box with the colors.

Return type

species.core.box.ColorColorBox

static get_color_magnitude(temperatures: numpy.ndarray, radius: float, filters_color: Tuple[str, str], filter_mag: str) species.core.box.ColorMagBox[source]

Function for calculating the colors and magnitudes in the range of 100-10000 K.

Parameters
  • temperatures (np.ndarray) – Temperatures (K) for which the colors and magnitude are calculated.

  • radius (float) – Radius (Rjup).

  • filters_color (tuple(str, str)) – Filter names for the color.

  • filter_mag (str) – Filter name for the absolute magnitudes.

Returns

Box with the colors and magnitudes.

Return type

species.core.box.ColorMagBox

get_flux(model_param: Dict[str, Union[float, List[float]]], synphot=None) Tuple[float, None][source]

Function for calculating the average flux density for the filter_name.

Parameters
  • model_param (dict) – Dictionary with the ‘teff’ (K), ‘radius’ (Rjup), and ‘distance’ (pc).

  • synphot (species.analysis.photometry.SyntheticPhotometry, None) – Synthetic photometry object. The object is created if set to None.

Returns

  • float – Average flux density (W m-2 um-1).

  • NoneType – None

get_magnitude(model_param: Dict[str, Union[float, List[float]]], synphot=None) Tuple[Tuple[float, None], Tuple[float, None]][source]

Function for calculating the magnitude for the filter_name.

Parameters
  • model_param (dict) – Dictionary with the ‘teff’ (K), ‘radius’ (Rjup), and ‘distance’ (pc).

  • synphot (species.analysis.photometry.SyntheticPhotometry, None) – Synthetic photometry object. The object is created if set to None.

Returns

  • float – Apparent magnitude (mag).

  • float – Absolute magnitude (mag)

get_spectrum(model_param: Dict[str, Union[float, List[float]]], spec_res: float, smooth: bool = False, wavel_resample: Optional[numpy.ndarray] = None) species.core.box.ModelBox[source]

Function for calculating a Planck spectrum or a combination of multiple Planck spectra. The spectrum is calculated at \(R = 500\). Afterwards, an optional smoothing and wavelength resampling can be applied.

Parameters
  • model_param (dict) – Dictionary with the ‘teff’ (K), ‘radius’ (Rjup), and ‘distance’ (pc). The values of ‘teff’ and ‘radius’ can be a single float, or a list with floats for a combination of multiple Planck functions, e.g. {‘teff’: [1500., 1000.], ‘radius’: [1., 2.], ‘distance’: 10.}.

  • spec_res (float) – Spectral resolution that is used for smoothing the spectrum with a Gaussian kernel when smooth=True.

  • smooth (bool) – If True, the spectrum is smoothed to the spectral resolution of spec_res.

  • wavel_resample (np.ndarray, None) – Wavelength points (um) to which the spectrum will be resampled. The resampling is applied after the optional smoothing to spec_res when smooth=True.

Returns

Box with the Planck spectrum.

Return type

species.core.box.ModelBox

static planck(wavel_points: numpy.ndarray, temperature: float, scaling: float) numpy.ndarray[source]

Internal function for calculating a Planck function.

Parameters
  • wavel_points (np.ndarray) – Wavelength points (um).

  • temperature (float) – Temperature (K).

  • scaling (float) – Scaling parameter.

Returns

Flux density (W m-2 um-1).

Return type

np.ndarray

static update_parameters(model_param: Dict[str, Union[float, List[float]]]) Dict[str, float][source]

Internal function for updating the dictionary with model parameters.

Parameters

model_param (dict) – Dictionary with the ‘teff’ (K), ‘radius’ (Rjup), and ‘distance’ (pc). The values of ‘teff’ and ‘radius’ can be a single float, or a list with floats for a combination of multiple Planck functions, e.g. {‘teff’: [1500., 1000.], ‘radius’: [1., 2.], ‘distance’: 10.}.

Returns

Updated dictionary with model parameters.

Return type

dict

species.read.read_radtrans module

Module for generating atmospheric model spectra with petitRADTRANS. Details on the radiative transfer code can be found in Mollière et al. (2019).

class species.read.read_radtrans.ReadRadtrans(line_species: Optional[List[str]] = None, cloud_species: Optional[List[str]] = None, scattering: bool = False, wavel_range: Optional[Tuple[float, float]] = None, filter_name: Optional[str] = None, pressure_grid: str = 'smaller', res_mode: str = 'c-k', cloud_wavel: Optional[Tuple[float, float]] = None)[source]

Bases: object

Class for generating a model spectrum with petitRADTRANS.

Parameters
  • line_species (list, None) – List with the line species. No line species are used if set to None.

  • cloud_species (list, None) – List with the cloud species. No clouds are used if set to None.

  • scattering (bool) – Include scattering in the radiative transfer.

  • wavel_range (tuple(float, float), None) – Wavelength range (um). The wavelength range is set to 0.8-10 um if set to None or not used if filter_name is not None.

  • filter_name (str, None) – Filter name that is used for the wavelength range. The wavel_range is used if ‘’filter_name`` is set to None.

  • pressure_grid (str) – The type of pressure grid that is used for the radiative transfer. Either ‘standard’, to use 180 layers both for the atmospheric structure (e.g. when interpolating the abundances) and 180 layers with the radiative transfer, or ‘smaller’ to use 60 (instead of 180) with the radiative transfer, or ‘clouds’ to start with 1440 layers but resample to ~100 layers (depending on the number of cloud species) with a refinement around the cloud decks. For cloudless atmospheres it is recommended to use ‘smaller’, which runs faster than ‘standard’ and provides sufficient accuracy. For cloudy atmosphere, one can test with ‘smaller’ but it is recommended to use ‘clouds’ for improved accuracy fluxes.

  • res_mode (str) – Resolution mode (‘c-k’ or ‘lbl’). The low-resolution mode (‘c-k’) calculates the spectrum with the correlated-k assumption at \(\lambda/\Delta \lambda = 1000\). The high-resolution mode (‘lbl’) calculates the spectrum with a line-by-line treatment at \(\lambda/\Delta \lambda = 10^6\).

  • cloud_wavel (tuple(float, float), None) – Tuple with the wavelength range (um) that is used for calculating the median optical depth of the clouds at the gas-only photosphere and then scaling the cloud optical depth to the value of log_tau_cloud. The range of cloud_wavel should be encompassed by the range of wavel_range. The full wavelength range (i.e. wavel_range) is used if the argument is set to None.

Returns

None

Return type

NoneType

get_flux(model_param: Dict[str, float]) Tuple[float, None][source]

Function for calculating the average flux density for the filter_name.

Parameters

model_param (dict) – Dictionary with the model parameters and values.

Returns

  • float – Flux (W m-2 um-1).

  • NoneType – Error (W m-2 um-1). Always set to None.

get_model(model_param: Dict[str, float], quenching: Optional[str] = None, spec_res: Optional[float] = None, wavel_resample: Optional[numpy.ndarray] = None, plot_contribution: Optional[str] = None) species.core.box.ModelBox[source]

Function for calculating a model spectrum with petitRADTRANS.

Parameters
  • model_param (dict) – Dictionary with the model parameters and values.

  • quenching (str, None) – Quenching type for CO/CH4/H2O abundances. Either the quenching pressure (bar) is a free parameter (quenching='pressure') or the quenching pressure is calculated from the mixing and chemical timescales (quenching='diffusion'). The quenching is not applied if the argument is set to None.

  • spec_res (float, None) – Spectral resolution, achieved by smoothing with a Gaussian kernel. No smoothing is applied when the argument is set to None.

  • wavel_resample (np.ndarray, None) – Wavelength points (um) to which the spectrum will be resampled. The original wavelengths points will be used if the argument is set to None.

  • plot_contribution (str, None) – Filename for the plot with the emission contribution. The plot is not created if the argument is set to None.

Returns

Box with the petitRADTRANS model spectrum.

Return type

species.core.box.ModelBox

species.read.read_spectrum module

Module with reading functionalities for spectral libraries.

class species.read.read_spectrum.ReadSpectrum(spec_library: str, filter_name: str = None)[source]

Bases: object

Class for reading spectral library data from the database.

Parameters
  • spec_library (str) – Name of the spectral library (‘irtf’, ‘spex’) or other type of spectrum (‘vega’).

  • filter_name (str, None) – Filter name for the wavelength range. Full spectra are read if set to None.

Returns

None

Return type

NoneType

get_flux(sptypes: List[str] = None) species.core.box.PhotometryBox[source]

Function for calculating the average flux density for the filter_name.

Parameters

sptypes (list(str), None) – Spectral types to select from a library. The spectral types should be indicated with two characters (e.g. ‘M5’, ‘L2’, ‘T3’). All spectra are selected if set to None.

Returns

Box with the synthetic photometry.

Return type

species.core.box.PhotometryBox

get_magnitude(sptypes: List[str] = None) species.core.box.PhotometryBox[source]

Function for calculating the apparent magnitude for the filter_name.

Parameters

sptypes (list(str)) – Spectral types to select from a library. The spectral types should be indicated with two characters (e.g. ‘M5’, ‘L2’, ‘T3’). All spectra are selected if set to None.

Returns

Box with the synthetic photometry.

Return type

species.core.box.PhotometryBox

get_spectrum(sptypes: List[str] = None, exclude_nan: bool = True) species.core.box.SpectrumBox[source]

Function for selecting spectra from the database.

Parameters
  • sptypes (list(str), None) – Spectral types to select from a library. The spectral types should be indicated with two characters (e.g. ‘M5’, ‘L2’, ‘T3’). All spectra are selected if set to None. For each object in the spec_library, the requested sptypes are first compared with the optical spectral type and, if not available, secondly the near-infrared spectral type.

  • exclude_nan (bool) – Exclude wavelength points for which the flux is NaN.

Returns

Box with the spectra.

Return type

species.core.box.SpectrumBox

Module contents