Source code for species.fit.fit_model

"""
Module with functionalities for fitting atmospheric model spectra.
"""

import os
import sys
import warnings

from typing import Optional, Union, List, Tuple, Dict

import dynesty
import numpy as np
import spectres

try:
    import ultranest
except:
    warnings.warn(
        "UltraNest could not be imported. Perhaps "
        "because cython was not correctly compiled?"
    )

try:
    import pymultinest
except:
    warnings.warn(
        "PyMultiNest could not be imported. "
        "Perhaps because MultiNest was not build "
        "and/or found at the LD_LIBRARY_PATH "
        "(Linux) or DYLD_LIBRARY_PATH (Mac)?"
    )

from PyAstronomy.pyasl import fastRotBroad
from schwimmbad import MPIPool
from scipy import interpolate, stats
from typeguard import typechecked

from species.core import constants
from species.phot.syn_phot import SyntheticPhotometry
from species.read.read_model import ReadModel
from species.read.read_object import ReadObject
from species.read.read_planck import ReadPlanck
from species.read.read_filter import ReadFilter
from species.util.convert_util import logg_to_mass
from species.util.core_util import print_section
from species.util.dust_util import (
    convert_to_av,
    interp_lognorm,
    interp_powerlaw,
    ism_extinction,
)
from species.util.model_util import binary_to_single, powerlaw_spectrum


warnings.filterwarnings("always", category=DeprecationWarning)


[docs] class FitModel: """ Class for fitting atmospheric model spectra to spectra and/or photometric fluxes, and using Bayesian inference (with ``MultiNest`` or ``UltraNest``) to estimate the posterior distribution and marginalized likelihood (i.e. "evidence"). A grid of model spectra is linearly interpolated for each spectrum and photometric flux, while taking into account the filter profile, spectral resolution, and wavelength sampling. The computation time depends mostly on the number of free parameters and the resolution / number of data points of the spectra. """ @typechecked def __init__( self, object_name: str, model: str, bounds: Optional[ Dict[ str, Union[ Tuple[float, float], Tuple[Optional[Tuple[float, float]]], Tuple[Optional[Tuple[float, float]], Optional[Tuple[float, float]]], Tuple[ Optional[Tuple[float, float]], Optional[Tuple[float, float]], Optional[Tuple[float, float]], ], List[Tuple[float, float]], ], ] ] = None, inc_phot: Union[bool, List[str]] = True, inc_spec: Union[bool, List[str]] = True, fit_corr: Optional[List[str]] = None, apply_weights: Union[bool, Dict[str, Union[float, np.ndarray]]] = False, ext_filter: Optional[str] = None, normal_prior: Optional[Dict[str, Tuple[float, float]]] = None, ) -> None: """ Parameters ---------- object_name : str Object name of the companion as stored in the database with :func:`~species.data.database.Database.add_object` or :func:`~species.data.database.Database.add_companion`. model : str Name of the atmospheric model (e.g. 'bt-settl', 'exo-rem', 'planck', or 'powerlaw'). bounds : dict(str, tuple(float, float)), None The boundaries that are used for the uniform or log-uniform priors. Mandatory parameters are automatically added if not already included in ``bounds``. Fixing a parameter is possible by providing the same value as lower and upper boundary of the parameter (e.g. ``bounds={'logg': (4., 4.)``. An explanation of the various parameters can be found below. See also the ``normal_prior`` parameter for using priors with a normal distribution. Atmospheric model parameters (e.g. with ``model='bt-settl-cifist'``; see docstring of :func:`~species.data.database.Database.add_model` for the available model grids): - Boundaries are provided as tuple of two floats. For example, ``bounds={'teff': (1000, 1500.), 'logg': (3.5, 5.)}``. - The grid boundaries (i.e. the maximum range) are adopted as prior if a parameter range is set to ``None`` (instead of a tuple with two values), or if a mandatory parameter is not included in the dictionary of ``bounds``. For example, ``bounds={'teff': (1000., 1500.), 'logg': None}``. The default range for the radius is :math:`0.5-5.0~R_\\mathrm{J}`. With ``bounds=None``, automatic priors will be set for all mandatory parameters. - Radial velocity can be included with the ``rad_vel`` parameter (km/s). This parameter will only be relevant if the radial velocity shift can be spectrally resolved given the instrument resolution. - Rotational broadening can be fitted by including the ``vsini`` parameter (km/s). This parameter will only be relevant if the rotational broadening is stronger than or comparable to the instrumental broadening, so typically when the data has a high spectral resolution. The resolution is set when adding a spectrum to the database with :func:`~species.data.database.Database.add_object`. Note that the broadening is applied with the `fastRotBroad <https://pyastronomy.readthedocs.io/ en/latest/pyaslDoc/aslDoc/rotBroad.html#PyAstronomy. pyasl.fastRotBroad>`_ function from ``PyAstronomy``. The rotational broadening is only accurate if the wavelength range of the data is somewhat narrow. For example, when fitting a medium- or high-resolution spectrum across multiple bands (e.g. $JHK$ bands) then it is best to split up the data into the separate bands when adding them with :func:`~species.data.database.Database.add_object`. - It is possible to fit a weighted combination of two atmospheric parameters from the same model. This can be useful to fit data of a spectroscopic binary or to account for atmospheric asymmetries of a single object. For each atmospheric parameter, a tuple of two tuples can be provided, for example ``bounds={'teff': ((1000., 1500.), (1300., 1800.))}``. Mandatory parameters that are not included are assumed to be the same for both components. The grid boundaries are used as parameter range if a component is set to ``None``. For example, ``bounds={'teff': (None, None), 'logg': (4.0, 4.0), (4.5, 4.5)}`` will use the full range for :math:`T_\\mathrm{eff}` of both components and fixes :math:`\\log{g}` to 4.0 and 4.5, respectively. The ``spec_weight`` parameter is automatically included in the fit, as it sets the weight of the two components in case a single radius is fitted, so when simulating horizontal inhomogeneities in the atmosphere. When fitting the combined photometry from two stars, but with known flux ratios in specific filters, it is possible to apply a prior for the known flux ratios. The filters with the known flux ratios can be different from the filters with (combined) photometric fluxes. For example, when the flux ratio is known in filter Paranal/ERIS.H then the parameter to add is ``ratio_Paranal/ERIS.H``. For a uniform prior, the ratio parameter should be added to ``bounds`` and for a normal prior it is added to ``normal_prior``. The flux ratio is defined as the flux of the secondary star divided by the flux of the primary star. - Instead of fitting the radius and parallax, it is also possible to fit a scaling parameter directly, either linearly sampled (``flux_scaling``) or logarithmically sampled (``log_flux_scaling``). Additionally, it is also possible to fit a flux offset (``flux_offset``), which adds a constant flux (in W m-2 um-1) to the model spectrum. Blackbody disk emission: - Blackbody parameters can be fitted to account for thermal emission from one or multiple disk components, in addition to the atmospheric emission. These parameters should therefore be combined with an atmospheric model. - Parameter boundaries have to be provided for 'disk_teff' and 'disk_radius'. For example, ``bounds={'teff': (2000., 3000.), 'radius': (1., 5.), 'logg': (3.5, 4.5), 'disk_teff': (100., 2000.), 'disk_radius': (1., 100.)}`` for fitting a single blackbody component, in addition to the atmospheric parameters. Or, ``bounds={'teff': (2000., 3000.), 'radius': (1., 5.), 'logg': (3.5, 4.5), 'disk_teff': [(2000., 500.), (1000., 20.)], 'disk_radius': [(1., 100.), (50., 1000.)]}`` for fitting two blackbody components. Any number of blackbody components can be fitted by including additional priors in the lists of ``'disk_teff'`` and ``'disk_radius'``. Blackbody parameters (only with ``model='planck'``): - This implementation fits both the atmospheric emission and possible disk emission with blackbody components. Parameter boundaries have to be provided for 'teff' and 'radius'. - For a single blackbody component, the values are provided as a tuple with two floats. For example, ``bounds={'teff': (1000., 2000.), 'radius': (0.8, 1.2)}``. - For multiple blackbody components, the values are provided as a list with tuples. For example, ``bounds={'teff': [(1000., 1400.), (1200., 1600.)], 'radius': [(0.8, 1.5), (1.2, 2.)]}``. - When fitting multiple blackbody components, an additional prior is used for restricting the temperatures and radii to decreasing and increasing values, respectively, in the order as provided in ``bounds``. Power-law spectrum (``model='powerlaw'``): - Parameter boundaries have to be provided for 'log_powerlaw_a', 'log_powerlaw_b', and 'log_powerlaw_c'. For example, ``bounds={'log_powerlaw_a': (-20., 0.), 'log_powerlaw_b': (-20., 5.), 'log_powerlaw_c': (-20., 5.)}``. - The spectrum is parametrized as :math:`\\log10{f} = a + b*\\log10{\\lambda}^c`, where :math:`a` is ``log_powerlaw_a``, :math:`b` is ``log_powerlaw_b``, and :math:`c` is ``log_powerlaw_c``. - Only implemented for fitting photometric fluxes, for example the IR fluxes of a star with disk. In that way, synthetic photometry can be calculated afterwards for a different filter. Note that this option assumes that the photometric fluxes are dominated by continuum emission while spectral lines are ignored. - The :func:`~species.plot.plot_mcmc.plot_mag_posterior` function can be used for calculating synthetic photometry and error bars from the posterior distributions. Calibration parameters: - For each spectrum/instrument, three optional parameters can be fitted to account for biases in the calibration: a scaling of the flux, a relative inflation of the uncertainties, and a radial velocity (RV) shift. The last parameter can account for an actual RV shift by the source or an inaccuracy in the wavelength solution. - For example, ``bounds={'SPHERE': ((0.8, 1.2), (0., 1.), (-50., 50.))}`` if the scaling is fitted between 0.8 and 1.2, the error is inflated (relative to the sampled model fluxes) with a value between 0 and 1, and the RV is fitted between -50 and 50 km/s. - The dictionary key should be the same as the database tag of the spectrum. For example, ``{'SPHERE': ((0.8, 1.2), (0., 1.), (-50., 50.))}`` if the spectrum is stored as ``'SPHERE'`` with :func:`~species.data.database.Database.add_object`. - Each of the three calibration parameters can be set to ``None`` in which case the parameter is not used. For example, ``bounds={'SPHERE': ((0.8, 1.2), None, None)}``. - The errors of the photometric fluxes can be inflated to account for underestimated error bars. The error inflation is relative to the actual flux and is either fitted separately for a filter, or a single error inflation is applied to all filters from an instrument. For the first case, the keyword in the ``bounds`` dictionary should be provided in the following format: ``'Paranal/NACO.Mp_error': (0., 1.)``. Here, the error of the NACO :math:`M'` flux is inflated up to 100 percent of the actual flux. For the second case, only the telescope/instrument part of the the filter name should be provided in the ``bounds`` dictionary, so in the following format: ``'Paranal/NACO_error': (0., 1.)``. This will increase the errors of all NACO filters by the same (relative) amount. - No calibration parameters are fitted if the spectrum name is not included in ``bounds``. ISM extinction parameters: - There are three approaches for fitting extinction. The first is with the empirical relation from `Cardelli et al. (1989) <https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract>`_ for ISM extinction. - The extinction is parametrized by the $V$ band extinction, $A_V$ (``ism_ext``), and optionally the reddening, R_V (``ism_red``). If ``ism_red`` is not provided, its value is fixed to 3.1 and not fitted. - The prior boundaries of ``ism_ext`` and ``ism_red`` should be provided in the ``bounds`` dictionary, for example ``bounds={'ism_ext': (0., 10.), 'ism_red': (0., 20.)}``. Log-normal size distribution: - The second approach is fitting the extinction of a log-normal size distribution of grains with a crystalline MgSiO3 composition, and a homogeneous, spherical structure. - The size distribution is parameterized with a mean geometric radius (``lognorm_radius`` in um) and a geometric standard deviation (``lognorm_sigma``, dimensionless). The grid of cross sections has been calculated for mean geometric radii between 0.001 and 10 um, and geometric standard deviations between 1.1 and 10. - The extinction (``lognorm_ext``) is fitted in the $V$ band ($A_V$ in mag) and the wavelength-dependent extinction cross sections are interpolated from a pre-tabulated grid. - The prior boundaries of ``lognorm_radius``, ``lognorm_sigma``, and ``lognorm_ext`` should be provided in the ``bounds`` dictionary, for example ``bounds={'lognorm_radius': (0.001, 10.), 'lognorm_sigma': (1.1, 10.), 'lognorm_ext': (0., 5.)}``. - A uniform prior is used for ``lognorm_sigma`` and ``lognorm_ext``, and a log-uniform prior for ``lognorm_radius``. Power-law size distribution: - The third approach is fitting the extinction of a power-law size distribution of grains, again with a crystalline MgSiO3 composition, and a homogeneous, spherical structure. - The size distribution is parameterized with a maximum radius (``powerlaw_max`` in um) and a power-law exponent (``powerlaw_exp``, dimensionless). The minimum radius is fixed to 1 nm. The grid of cross sections has been calculated for maximum radii between 0.01 and 100 um, and power-law exponents between -10 and 10. - The extinction (``powerlaw_ext``) is fitted in the $V$ band ($A_V$ in mag) and the wavelength-dependent extinction cross sections are interpolated from a pre-tabulated grid. - The prior boundaries of ``powerlaw_max``, ``powerlaw_exp``, and ``powerlaw_ext`` should be provided in the ``bounds`` dictionary, for example ``{'powerlaw_max': (0.01, 100.), 'powerlaw_exp': (-10., 10.), 'powerlaw_ext': (0., 5.)}``. - A uniform prior is used for ``powerlaw_exp`` and ``powerlaw_ext``, and a log-uniform prior for ``powerlaw_max``. inc_phot : bool, list(str) Include photometric data in the fit. If a boolean, either all (``True``) or none (``False``) of the data are selected. If a list, a subset of filter names (as stored in the database) can be provided. inc_spec : bool, list(str) Include spectroscopic data in the fit. If a boolean, either all (``True``) or none (``False``) of the data are selected. If a list, a subset of spectrum names (as stored in the database with :func:`~species.data.database.Database.add_object`) can be provided. fit_corr : list(str), None List with spectrum names for which the covariances are modeled with a Gaussian process (see Wang et al. 2020). This option can be used if the actual covariances as determined from the data are not available for the spectra of ``object_name``. The parameters that will be fitted are the correlation length and the fractional amplitude. apply_weights : bool, dict Weights to be applied to the log-likelihood components of the spectra and photometric fluxes that are provided with ``inc_spec`` and ``inc_phot``. This parameter can for example be used to increase the weighting of the photometric fluxes relative to a spectrum that consists of many wavelength points. By setting the argument to ``True``, the weighting factors are automatically set, based on the FWHM of the filter profiles or the wavelength spacing calculated from the spectral resolution. By setting the argument to ``False``, there will be no weighting applied. ext_filter : str, None Filter that is associated with the (optional) extinction parameter, ``ism_ext``. When the argument of ``ext_filter`` is set to ``None``, the extinction is defined in the visual (i.e. :math:`A_V`). By providing a filter name from the `SVO Filter Profile Service <http://svo2.cab.inta-csic.es/ svo/theory/fps/>`_ as argument then the extinction ``ism_ext`` is fitted in that filter instead of the $V$ band. normal_prior : dict(str, tuple(float, float)), None Dictionary with normal priors for one or multiple parameters. The prior can be set for any of the atmosphere or calibration parameters, e.g. ``normal_prior={'teff': (1200., 100.)}``, for a prior distribution with a mean of 1200 K and a standard deviation of 100 K. Additionally, a prior can be set for the mass, e.g. ``normal_prior={'mass': (13., 3.)}`` for an expected mass of 13 Mjup with an uncertainty of 3 Mjup. A normal prior for the parallax is automatically included so does not need to be set with ``normal_prior``. The parameter is not used if the argument is set to ``None``. See also the ``bounds`` parameter for including priors with a (log-)uniform distribution. Returns ------- NoneType None """ print_section("Fit model spectra") if not inc_phot and not inc_spec: raise ValueError("No photometric or spectroscopic data has been selected.") if model == "planck" and ("teff" not in bounds or "radius" not in bounds): raise ValueError( "The 'bounds' dictionary should contain 'teff' and 'radius'." ) if model == "bt-settl": warnings.warn( "It is recommended to use the CIFIST " "grid of the BT-Settl, because it is " "a newer version. In that case, set " "model='bt-settl-cifist' when using " "add_model of Database." ) # Set attributes self.object = ReadObject(object_name) self.obj_parallax = self.object.get_parallax() self.binary = False self.ext_filter = ext_filter if fit_corr is None: self.fit_corr = [] else: self.fit_corr = fit_corr self.model = model self.bounds = bounds if normal_prior is None: self.normal_prior = {} else: self.normal_prior = normal_prior # Set model parameters and boundaries if self.model == "planck": # Fitting blackbody radiation if isinstance(bounds["teff"], list) and isinstance(bounds["radius"], list): # Update temperature and radius parameters in case of multiple blackbody components self.n_planck = len(bounds["teff"]) self.modelpar = [] self.bounds = {} for i, item in enumerate(bounds["teff"]): self.modelpar.append(f"teff_{i}") self.modelpar.append(f"radius_{i}") self.bounds[f"teff_{i}"] = bounds["teff"][i] self.bounds[f"radius_{i}"] = bounds["radius"][i] else: # Fitting a single blackbody component self.n_planck = 1 self.modelpar = ["teff", "radius"] self.bounds = bounds self.modelpar.append("parallax") elif self.model == "powerlaw": self.n_planck = 0 self.modelpar = ["log_powerlaw_a", "log_powerlaw_b", "log_powerlaw_c"] else: # Fitting self-consistent atmospheric models if self.bounds is not None: readmodel = ReadModel(self.model) bounds_grid = readmodel.get_bounds() for key, value in bounds_grid.items(): if key not in self.bounds or self.bounds[key] is None: # Set the parameter boundaries to the grid # boundaries if set to None or not found self.bounds[key] = bounds_grid[key] elif isinstance(self.bounds[key][0], tuple): self.binary = True self.bounds[f"{key}_0"] = self.bounds[key][0] self.bounds[f"{key}_1"] = self.bounds[key][1] del self.bounds[key] elif self.bounds[key][0] is None and self.bounds[key][1] is None: self.binary = True self.bounds[f"{key}_0"] = bounds_grid[key] self.bounds[f"{key}_1"] = bounds_grid[key] del self.bounds[key] else: if self.bounds[key][0] < bounds_grid[key][0]: warnings.warn( f"The lower bound on {key} " f"({self.bounds[key][0]}) is smaller than " f"the lower bound from the available " f"{self.model} model grid " f"({bounds_grid[key][0]}). The lower bound " f"of the {key} prior will be adjusted to " f"{bounds_grid[key][0]}." ) self.bounds[key] = ( bounds_grid[key][0], self.bounds[key][1], ) if self.bounds[key][1] > bounds_grid[key][1]: warnings.warn( f"The upper bound on {key} " f"({self.bounds[key][1]}) is larger than the " f"upper bound from the available {self.model} " f"model grid ({bounds_grid[key][1]}). The " f"bound of the {key} prior will be adjusted " f"to {bounds_grid[key][1]}." ) self.bounds[key] = ( self.bounds[key][0], bounds_grid[key][1], ) if self.binary: for i in range(2): if self.bounds[f"{key}_{i}"][0] < bounds_grid[key][0]: warnings.warn( f"The lower bound on {key}_{i} " f"({self.bounds[f'{key}_{i}'][0]}) " f"is smaller than the lower bound " f"from the available {self.model} " f"model grid ({bounds_grid[key][0]}). " f"The lower bound of the {key}_{i} " f"prior will be adjusted to " f"{bounds_grid[key][0]}." ) self.bounds[f"{key}_{i}"] = ( bounds_grid[key][0], self.bounds[f"{key}_{i}"][1], ) if self.bounds[f"{key}_{i}"][1] > bounds_grid[key][1]: warnings.warn( f"The upper bound on {key}_{i} " f"({self.bounds[f'{key}_{i}'][0]}) " f"is larger than the lower bound " f"from the available {self.model} " f"model grid ({bounds_grid[key][1]}). " f"The upper bound of the {key}_{i} " f"prior will be adjusted to " f"{bounds_grid[key][1]}." ) self.bounds[f"{key}_{i}"] = ( self.bounds[f"{key}_{i}"][0], bounds_grid[key][1], ) else: # Set all parameter boundaries to the grid boundaries readmodel = ReadModel(self.model, None, None) self.bounds = readmodel.get_bounds() print(f"Object name: {object_name}") print(f"Model tag: {model}") print(f"Binary star: {self.binary}") self.modelpar = readmodel.get_parameters() if "flux_scaling" in self.bounds: # Fit arbitrary flux scaling # Instead of using radius and parallax self.modelpar.append("flux_scaling") elif "log_flux_scaling" in self.bounds: # Fit arbitrary log flux scaling # Instead of using radius and parallax self.modelpar.append("log_flux_scaling") else: self.modelpar.append("radius") if self.binary: if "parallax" in self.bounds: if isinstance(self.bounds["parallax"][0], tuple): self.modelpar.append("parallax_0") self.modelpar.append("parallax_1") self.bounds["parallax_0"] = self.bounds["parallax"][0] self.bounds["parallax_1"] = self.bounds["parallax"][1] del self.bounds["parallax"] if "parallax_0" in self.normal_prior: self.modelpar.append("parallax_0") self.modelpar.append("parallax_1") if "parallax_0" not in self.modelpar: self.modelpar.append("parallax") if "flux_offset" in self.bounds: self.modelpar.append("flux_offset") # Optional rotational broading if "vsini" in self.bounds: # Add vsin(i) parameter (km s-1) self.modelpar.append("vsini") self.bounds["vsini"] = (bounds["vsini"][0], bounds["vsini"][1]) if self.binary: if "radius" in self.bounds: if isinstance(self.bounds["radius"][0], tuple): self.bounds["radius_0"] = self.bounds["radius"][0] self.bounds["radius_1"] = self.bounds["radius"][1] del self.bounds["radius"] else: self.bounds["radius"] = (0.5, 5.0) elif "radius" not in self.bounds and "radius" in self.modelpar: self.bounds["radius"] = (0.5, 5.0) self.n_planck = 0 if "disk_teff" in self.bounds and "disk_radius" in self.bounds: if isinstance(bounds["disk_teff"], list) and isinstance( bounds["disk_radius"], list ): # Update temperature and radius parameters # in case of multiple disk components self.n_disk = len(bounds["disk_teff"]) for i, item in enumerate(bounds["disk_teff"]): self.modelpar.append(f"disk_teff_{i}") self.modelpar.append(f"disk_radius_{i}") self.bounds[f"disk_teff_{i}"] = bounds["disk_teff"][i] self.bounds[f"disk_radius_{i}"] = bounds["disk_radius"][i] del bounds["disk_teff"] del bounds["disk_radius"] else: # Fitting a single disk component self.n_disk = 1 self.modelpar.append("disk_teff") self.modelpar.append("disk_radius") else: self.n_disk = 0 if self.binary: # Update list of model parameters for key in bounds: if key[:-2] in self.modelpar: par_index = self.modelpar.index(key[:-2]) self.modelpar[par_index] = key[:-2] + "_0" self.modelpar.insert(par_index, key[:-2] + "_1") if "radius" in self.modelpar: # Fit a weighting for the two spectra in case this # is a single object, so not an actual binary star. # In that case the combination of two spectra is # used to account for atmospheric assymetries self.modelpar.append("spec_weight") if "spec_weight" not in self.bounds: self.bounds["spec_weight"] = (0.0, 1.0) # Select filters and spectra if isinstance(inc_phot, bool): if inc_phot: # Select all filters if inc_phot=True inc_phot = self.object.list_filters(verbose=False) else: inc_phot = [] if isinstance(inc_spec, bool): if inc_spec: # Select all spectra if inc_spec=True inc_spec = list(self.object.get_spectrum().keys()) else: inc_spec = [] if inc_spec and self.model == "powerlaw": warnings.warn( "The 'inc_spec' parameter is not supported when " "fitting a power-law spectrum to photometric data. " "The argument of 'inc_spec' is therefore ignored." ) inc_spec = [] # Include photometric data self.objphot = [] self.modelphot = [] self.filter_name = [] self.instr_name = [] print() for item in inc_phot: if self.model == "planck": # Create SyntheticPhotometry objects when fitting a Planck function print(f"Creating synthetic photometry: {item}...", end="", flush=True) self.modelphot.append(SyntheticPhotometry(item)) print(" [DONE]") elif self.model == "powerlaw": # Or create SyntheticPhotometry objects when fitting a power-law function synphot = SyntheticPhotometry(item) # Set the wavelength range of the filter as attribute synphot.zero_point() self.modelphot.append(synphot) else: # Or interpolate the model grid for each filter print(f"Interpolating {item}...", end="", flush=True) readmodel = ReadModel(self.model, filter_name=item) readmodel.interpolate_grid(wavel_resample=None, spec_res=None) self.modelphot.append(readmodel) print(" [DONE]") # Add parameter for error inflation instr_filt = item.split(".")[0] if f"{item}_error" in self.bounds: self.modelpar.append(f"{item}_error") elif ( f"{instr_filt}_error" in self.bounds and f"{instr_filt}_error" not in self.modelpar ): self.modelpar.append(f"{instr_filt}_error") # Store the flux and uncertainty for each filter obj_phot = self.object.get_photometry(item) self.objphot.append(np.array([obj_phot[2], obj_phot[3]])) self.filter_name.append(item) self.instr_name.append(instr_filt) # Include spectroscopic data if inc_spec: # Select all spectra self.spectrum = self.object.get_spectrum() # Select the spectrum names that are not in inc_spec spec_remove = [] for item in self.spectrum: if item not in inc_spec: spec_remove.append(item) # Remove the spectra that are not included in inc_spec for item in spec_remove: del self.spectrum[item] self.n_corr_par = 0 for item in self.spectrum: if item in self.fit_corr: if self.spectrum[item][1] is not None: warnings.warn( f"There is a covariance matrix included " f"with the {item} data of " f"{object_name} so it is not needed to " f"model the covariances with a " f"Gaussian process. Want to test the " f"Gaussian process nonetheless? Please " f"overwrite the data of {object_name} " f"with add_object while setting the " f"path to the covariance data to None." ) self.fit_corr.remove(item) else: self.modelpar.append(f"corr_len_{item}") self.modelpar.append(f"corr_amp_{item}") if f"corr_len_{item}" not in self.bounds: self.bounds[f"corr_len_{item}"] = ( -3.0, 0.0, ) # log10(corr_len/um) if f"corr_amp_{item}" not in self.bounds: self.bounds[f"corr_amp_{item}"] = (0.0, 1.0) self.n_corr_par += 2 self.modelspec = [] if self.model != "planck": for spec_key, spec_value in self.spectrum.items(): print(f"\rInterpolating {spec_key}...", end="", flush=True) wavel_range = ( 0.9 * spec_value[0][0, 0], 1.1 * spec_value[0][-1, 0], ) readmodel = ReadModel(self.model, wavel_range=wavel_range) readmodel.interpolate_grid( wavel_resample=spec_value[0][:, 0], spec_res=spec_value[3], ) self.modelspec.append(readmodel) print(" [DONE]") else: self.spectrum = {} self.modelspec = None self.n_corr_par = 0 # Get the parameter order if interpolate_grid is used if self.model not in ["planck", "powerlaw"]: readmodel = ReadModel(self.model) self.param_interp = readmodel.get_parameters() if self.binary: param_tmp = self.param_interp.copy() self.param_interp = [] for item in param_tmp: if f"{item}_0" in self.modelpar and f"{item}_1" in self.modelpar: self.param_interp.append(f"{item}_0") self.param_interp.append(f"{item}_1") else: self.param_interp.append(item) else: self.param_interp = None # Include blackbody disk self.diskphot = [] self.diskspec = [] if self.n_disk > 0: for item in inc_phot: print(f"Interpolating {item}...", end="", flush=True) readmodel = ReadModel("blackbody", filter_name=item) readmodel.interpolate_grid(wavel_resample=None, spec_res=None) self.diskphot.append(readmodel) print(" [DONE]") for spec_key, spec_value in self.spectrum.items(): print(f"\rInterpolating {spec_key}...", end="", flush=True) wavel_range = (0.9 * spec_value[0][0, 0], 1.1 * spec_value[0][-1, 0]) readmodel = ReadModel("blackbody", wavel_range=wavel_range) readmodel.interpolate_grid( wavel_resample=spec_value[0][:, 0], spec_res=spec_value[3], ) self.diskspec.append(readmodel) print(" [DONE]") for item in self.spectrum: if bounds is not None and item in bounds: if bounds[item][0] is not None: # Add the flux scaling parameter self.modelpar.append(f"scaling_{item}") self.bounds[f"scaling_{item}"] = ( bounds[item][0][0], bounds[item][0][1], ) if len(bounds[item]) > 1 and bounds[item][1] is not None: # Add the error inflation parameters self.modelpar.append(f"error_{item}") self.bounds[f"error_{item}"] = ( bounds[item][1][0], bounds[item][1][1], ) if self.bounds[f"error_{item}"][1] < 0.0: warnings.warn( f"The lower bound of 'error_{item}' is " "smaller than 0. The error inflation " "should be given relative to the model " "fluxes so the boundaries should be " "larger than 0." ) if self.bounds[f"error_{item}"][1] < 0.0: warnings.warn( f"The upper bound of 'error_{item}' is " "smaller than 0. The error inflation " "should be given relative to the model " "fluxes so the boundaries should be " "larger than 0." ) if len(bounds[item]) > 2 and bounds[item][2] is not None: # Add radial velocity parameter (km s-1) self.modelpar.append(f"radvel_{item}") self.bounds[f"radvel_{item}"] = ( bounds[item][2][0], bounds[item][2][1], ) if item in self.bounds: del self.bounds[item] if ( "lognorm_radius" in self.bounds and "lognorm_sigma" in self.bounds and "lognorm_ext" in self.bounds ): self.cross_sections, _, _ = interp_lognorm(inc_phot, inc_spec) self.modelpar.append("lognorm_radius") self.modelpar.append("lognorm_sigma") self.modelpar.append("lognorm_ext") self.bounds["lognorm_radius"] = ( np.log10(self.bounds["lognorm_radius"][0]), np.log10(self.bounds["lognorm_radius"][1]), ) elif ( "powerlaw_max" in self.bounds and "powerlaw_exp" in self.bounds and "powerlaw_ext" in self.bounds ): self.cross_sections, _, _ = interp_powerlaw(inc_phot, inc_spec) self.modelpar.append("powerlaw_max") self.modelpar.append("powerlaw_exp") self.modelpar.append("powerlaw_ext") self.bounds["powerlaw_max"] = ( np.log10(self.bounds["powerlaw_max"][0]), np.log10(self.bounds["powerlaw_max"][1]), ) else: self.cross_sections = None if "ism_ext" in self.bounds: if self.ext_filter is not None: self.modelpar.append(f"phot_ext_{self.ext_filter}") self.bounds[f"phot_ext_{self.ext_filter}"] = self.bounds["ism_ext"] del self.bounds["ism_ext"] else: self.modelpar.append("ism_ext") if "ism_red" in self.bounds: self.modelpar.append("ism_red") if "veil_a" in self.bounds: self.modelpar.append("veil_a") if "veil_b" in self.bounds: self.modelpar.append("veil_b") if "veil_ref" in self.bounds: self.modelpar.append("veil_ref") # Include prior flux ratio when fitting self.flux_ratio = {} for param_item in self.bounds: if param_item[:6] == "ratio_": print(f"Interpolating {param_item[6:]}...", end="", flush=True) read_model = ReadModel(self.model, filter_name=param_item[6:]) read_model.interpolate_grid(wavel_resample=None, spec_res=None) self.flux_ratio[param_item[6:]] = read_model print(" [DONE]") for param_item in self.normal_prior: if param_item[:6] == "ratio_": print(f"Interpolating {param_item[6:]}...", end="", flush=True) read_model = ReadModel(self.model, filter_name=param_item[6:]) read_model.interpolate_grid(wavel_resample=None, spec_res=None) self.flux_ratio[param_item[6:]] = read_model print(" [DONE]") self.fix_param = {} del_param = [] for key, value in self.bounds.items(): if value[0] == value[1] and value[0] is not None and value[1] is not None: self.fix_param[key] = value[0] del_param.append(key) if del_param: print(f"\nFixing {len(del_param)} parameters:") for item in del_param: print(f" - {item} = {self.fix_param[item]}") self.modelpar.remove(item) del self.bounds[item] print(f"\nFitting {len(self.modelpar)} parameters:") for item in self.modelpar: print(f" - {item}") # Add parallax to dictionary with Gaussian priors if ( "parallax" in self.modelpar and "parallax" not in self.fix_param and "parallax" not in self.bounds ): self.normal_prior["parallax"] = (self.obj_parallax[0], self.obj_parallax[1]) # Printing uniform and normal priors print("\nUniform priors (min, max):") for key, value in self.bounds.items(): print(f" - {key} = {value}") if len(self.normal_prior) > 0: print("\nNormal priors (mean, sigma):") for key, value in self.normal_prior.items(): print(f" - {key} = {value}") # Create a dictionary with the cube indices of the parameters self.cube_index = {} for i, item in enumerate(self.modelpar): self.cube_index[item] = i # Weighting of the photometric and spectroscopic data print("\nWeights for the log-likelihood function:") if isinstance(apply_weights, bool): self.weights = {} if apply_weights: for spec_item in inc_spec: spec_size = self.spectrum[spec_item][0].shape[0] if spec_item not in self.weights: # Set weight for spectrum to lambda/R spec_wavel = self.spectrum[spec_item][0][:, 0] spec_res = self.spectrum[spec_item][3] self.weights[spec_item] = spec_wavel / spec_res elif not isinstance(self.weights[spec_item], np.ndarray): self.weights[spec_item] = np.full( spec_size, self.weights[spec_item] ) if np.all(self.weights[spec_item] == self.weights[spec_item][0]): print(f" - {spec_item} = {self.weights[spec_item][0]:.2e}") else: print( f" - {spec_item} = {np.amin(self.weights[spec_item]):.2e} " f"- {np.amax(self.weights[spec_item]):.2e}" ) for phot_item in inc_phot: if phot_item not in self.weights: # Set weight for photometry to FWHM of filter read_filt = ReadFilter(phot_item) self.weights[phot_item] = read_filt.filter_fwhm() print(f" - {phot_item} = {self.weights[phot_item]:.2e}") else: for spec_item in inc_spec: spec_size = self.spectrum[spec_item][0].shape[0] self.weights[spec_item] = np.full(spec_size, 1.0) print(f" - {spec_item} = {self.weights[spec_item][0]:.2f}") for phot_item in inc_phot: # Set weight to 1 if apply_weights=False self.weights[phot_item] = 1.0 print(f" - {phot_item} = {self.weights[phot_item]:.2f}") else: self.weights = apply_weights for spec_item in inc_spec: spec_size = self.spectrum[spec_item][0].shape[0] if spec_item not in self.weights: # Set weight for spectrum to lambda/R spec_wavel = self.spectrum[spec_item][0][:, 0] spec_res = self.spectrum[spec_item][3] self.weights[spec_item] = spec_wavel / spec_res elif not isinstance(self.weights[spec_item], np.ndarray): self.weights[spec_item] = np.full( spec_size, self.weights[spec_item] ) if np.all(self.weights[spec_item] == self.weights[spec_item][0]): print(f" - {spec_item} = {self.weights[spec_item][0]:.2e}") else: print( f" - {spec_item} = {np.amin(self.weights[spec_item]):.2e} " f"- {np.amax(self.weights[spec_item]):.2e}" ) for phot_item in inc_phot: if phot_item not in self.weights: # Set weight for photometry to FWHM of filter read_filt = ReadFilter(phot_item) self.weights[phot_item] = read_filt.filter_fwhm() print(f" - {phot_item} = {self.weights[phot_item]:.2e}") @typechecked def _prior_transform( self, cube, bounds: Dict[str, Tuple[float, float]], cube_index: Dict[str, int] ): """ Function to transform the sampled unit cube into a cube with sampled model parameters. Parameters ---------- cube : LP_c_double, np.ndarray Unit cube. bounds : dict(str, tuple(float, float)) Dictionary with the prior boundaries. cube_index : dict(str, int) Dictionary with the indices for selecting the model parameters in the ``cube``. Returns ------- np.ndarray Cube with the sampled model parameters. """ if isinstance(cube, np.ndarray): # Create new array for UltraNest param_out = cube.copy() else: # Convert from ctypes.c_double to np.ndarray # Only required with MultiNest # n_modelpar = len(self.modelpar) # cube = np.ctypeslib.as_array(cube, shape=(n_modelpar,)) # Use the same object with MultiNest param_out = cube for item in cube_index: if item in self.normal_prior: # Gaussian prior param_out[cube_index[item]] = stats.norm.ppf( param_out[cube_index[item]], loc=self.normal_prior[item][0], scale=self.normal_prior[item][1], ) else: # Uniform prior param_out[cube_index[item]] = ( bounds[item][0] + (bounds[item][1] - bounds[item][0]) * param_out[cube_index[item]] ) return param_out @typechecked def _lnlike_func( self, params, ) -> Union[np.float64, float]: """ Function for calculating the log-likelihood for the sampled parameter cube. Parameters ---------- params : LP_c_double, np.ndarray Cube with sampled model parameters. Returns ------- float Log-likelihood. """ # Initilize dictionaries for different parameter types spec_scaling = {} phot_scaling = {} err_scaling = {} corr_len = {} corr_amp = {} dust_param = {} veil_param = {} param_dict = {} rad_vel = {} for item in self.bounds: # Add the parameters from the params to their dictionaries if item[:8] == "scaling_" and item[8:] in self.spectrum: spec_scaling[item[8:]] = params[self.cube_index[item]] elif item[:6] == "error_" and item[6:] in self.spectrum: err_scaling[item[6:]] = params[self.cube_index[item]] elif item[:7] == "radvel_": rad_vel[item[7:]] = params[self.cube_index[item]] elif item[:9] == "corr_len_" and item[9:] in self.spectrum: corr_len[item[9:]] = 10.0 ** params[self.cube_index[item]] # (um) elif item[:9] == "corr_amp_" and item[9:] in self.spectrum: corr_amp[item[9:]] = params[self.cube_index[item]] elif item[-6:] == "_error" and item[:-6] in self.filter_name: phot_scaling[item[:-6]] = params[self.cube_index[item]] elif item[-6:] == "_error" and item[:-6] in self.instr_name: phot_scaling[item[:-6]] = params[self.cube_index[item]] elif item[:8] == "lognorm_": dust_param[item] = params[self.cube_index[item]] elif item[:9] == "powerlaw_": dust_param[item] = params[self.cube_index[item]] elif item[:4] == "ism_": dust_param[item] = params[self.cube_index[item]] elif self.ext_filter is not None and item == f"phot_ext_{self.ext_filter}": dust_param[item] = params[self.cube_index[item]] elif item == "veil_a": veil_param["veil_a"] = params[self.cube_index[item]] elif item == "veil_b": veil_param["veil_b"] = params[self.cube_index[item]] elif item == "veil_ref": veil_param["veil_ref"] = params[self.cube_index[item]] elif item == "spec_weight": pass else: param_dict[item] = params[self.cube_index[item]] # Disk parameters disk_param = {} if self.n_disk == 1: if "disk_teff" in self.fix_param: disk_param["teff"] = self.fix_param["disk_teff"] else: disk_param["teff"] = params[self.cube_index["disk_teff"]] if "disk_radius" in self.fix_param: disk_param["radius"] = self.fix_param["disk_radius"] else: disk_param["radius"] = params[self.cube_index["disk_radius"]] elif self.n_disk > 1: for disk_idx in range(self.n_disk): if f"disk_teff_{disk_idx}" in self.fix_param: disk_param[f"teff_{disk_idx}"] = self.fix_param[ f"disk_teff_{disk_idx}" ] else: disk_param[f"teff_{disk_idx}"] = params[ self.cube_index[f"disk_teff_{disk_idx}"] ] if f"disk_radius_{disk_idx}" in self.fix_param: disk_param[f"radius_{disk_idx}"] = self.fix_param[ f"disk_radius_{disk_idx}" ] else: disk_param[f"radius_{disk_idx}"] = params[ self.cube_index[f"disk_radius_{disk_idx}"] ] # Add the parallax manually because it should # not be provided in the bounds dictionary if self.model != "powerlaw": if "parallax_0" in self.cube_index: parallax_0 = params[self.cube_index["parallax_0"]] elif "parallax_0" in self.fix_param: parallax_0 = self.fix_param["parallax_0"] else: parallax_0 = params[self.cube_index["parallax"]] if "parallax_1" in self.cube_index: parallax_1 = params[self.cube_index["parallax_1"]] elif "parallax_0" in self.fix_param: parallax_1 = self.fix_param["parallax_1"] else: parallax_1 = params[self.cube_index["parallax"]] if "parallax" in self.cube_index: parallax = params[self.cube_index["parallax"]] elif "parallax" in self.fix_param: parallax = self.fix_param["parallax"] else: parallax = None for item in self.fix_param: # Add the fixed parameters to their dictionaries if item[:8] == "scaling_" and item[8:] in self.spectrum: spec_scaling[item[8:]] = self.fix_param[item] elif item[:6] == "error_" and item[6:] in self.spectrum: err_scaling[item[6:]] = self.fix_param[item] elif item[:7] == "radvel_" and item[7:] in self.spectrum: rad_vel[item[7:]] = self.fix_param[item] elif item[:9] == "corr_len_" and item[9:] in self.spectrum: corr_len[item[9:]] = self.fix_param[item] # (um) elif item[:9] == "corr_amp_" and item[9:] in self.spectrum: corr_amp[item[9:]] = self.fix_param[item] elif item[:8] == "lognorm_": dust_param[item] = self.fix_param[item] elif item[:9] == "powerlaw_": dust_param[item] = self.fix_param[item] elif item[:4] == "ism_": dust_param[item] = self.fix_param[item] elif item[:9] == "phot_ext_": dust_param[item] = self.fix_param[item] elif item == "spec_weight": pass else: param_dict[item] = self.fix_param[item] # Check if the blackbody temperatures/radii are decreasing/increasing if self.model == "planck" and self.n_planck > 1: for i in range(self.n_planck - 1): if param_dict[f"teff_{i+1}"] > param_dict[f"teff_{i}"]: return -np.inf if param_dict[f"radius_{i}"] > param_dict[f"radius_{i+1}"]: return -np.inf if self.n_disk == 1: if disk_param["teff"] > param_dict["teff"]: return -np.inf if disk_param["radius"] < param_dict["radius"]: return -np.inf elif self.n_disk > 1: for disk_idx in range(self.n_disk): if disk_idx == 0: if disk_param["teff_0"] > param_dict["teff"]: return -np.inf if disk_param["radius_0"] < param_dict["radius"]: return -np.inf else: if ( disk_param[f"teff_{disk_idx}"] > disk_param[f"teff_{disk_idx-1}"] ): return -np.inf if ( disk_param[f"radius_{disk_idx}"] < disk_param[f"radius_{disk_idx-1}"] ): return -np.inf if self.model != "powerlaw": if "radius_0" in param_dict and "radius_1" in param_dict: flux_scaling_0 = (param_dict["radius_0"] * constants.R_JUP) ** 2 / ( 1e3 * constants.PARSEC / parallax_0 ) ** 2 flux_scaling_1 = (param_dict["radius_1"] * constants.R_JUP) ** 2 / ( 1e3 * constants.PARSEC / parallax_1 ) ** 2 # The scaling is applied manually because of the interpolation del param_dict["radius_0"] del param_dict["radius_1"] flux_offset = 0.0 else: if parallax is None: if "flux_scaling" in self.cube_index: flux_scaling = params[self.cube_index["flux_scaling"]] else: flux_scaling = ( 10.0 ** params[self.cube_index["log_flux_scaling"]] ) else: try: flux_scaling = (param_dict["radius"] * constants.R_JUP) ** 2 / ( 1e3 * constants.PARSEC / parallax ) ** 2 except ZeroDivisionError: warnings.warn( f"Encountered a ZeroDivisionError when" f"calculating the flux scaling with " f"parallax = {parallax}. This error " f"should not have happened. Setting " f"the scaling to 1e100." ) flux_scaling = 1e100 # The scaling is applied manually because of the interpolation del param_dict["radius"] if "flux_offset" in self.cube_index: flux_offset = params[self.cube_index["flux_offset"]] else: flux_offset = 0.0 for item in self.spectrum: if item not in spec_scaling: spec_scaling[item] = 1.0 if item not in err_scaling: err_scaling[item] = None if self.param_interp is not None: # Sort the parameters in the correct order for # spectrum_interp because spectrum_interp creates # a list in the order of the keys in param_dict param_tmp = param_dict.copy() param_dict = {} for item in self.param_interp: param_dict[item] = param_tmp[item] ln_like = 0.0 for key, value in self.normal_prior.items(): if key == "mass": if "logg" in self.modelpar and "radius" in self.modelpar: mass = logg_to_mass( params[self.cube_index["logg"]], params[self.cube_index["radius"]], ) ln_like += -0.5 * (mass - value[0]) ** 2 / value[1] ** 2 else: if "logg" not in self.modelpar: warnings.warn( "The 'logg' parameter is not used " f"by the '{self.model}' model so " "the mass prior can not be applied." ) if "radius" not in self.modelpar: warnings.warn( "The 'radius' parameter is not fitted " "so the mass prior can not be applied." ) elif key[:6] == "ratio_": filter_name = key[6:] param_0 = binary_to_single(param_dict, 0) phot_flux_0 = self.flux_ratio[filter_name].spectrum_interp( list(param_0.values()) )[0][0] phot_flux_0 *= flux_scaling_0 param_1 = binary_to_single(param_dict, 1) phot_flux_1 = self.flux_ratio[filter_name].spectrum_interp( list(param_1.values()) )[0][0] phot_flux_1 *= flux_scaling_1 # Uniform prior for the flux ratio if f"ratio_{filter_name}" in self.bounds: ratio_prior = self.bounds[f"ratio_{filter_name}"] if ratio_prior[0] > phot_flux_1 / phot_flux_0: return -np.inf elif ratio_prior[1] < phot_flux_1 / phot_flux_0: return -np.inf # Normal prior for the flux ratio if f"ratio_{filter_name}" in self.normal_prior: ratio_prior = self.normal_prior[f"ratio_{filter_name}"] ln_like += ( -0.5 * (phot_flux_1 / phot_flux_0 - ratio_prior[0]) ** 2 / ratio_prior[1] ** 2 ) else: ln_like += ( -0.5 * (params[self.cube_index[key]] - value[0]) ** 2 / value[1] ** 2 ) if "lognorm_ext" in dust_param: cross_tmp = self.cross_sections["Generic/Bessell.V"]( (10.0 ** dust_param["lognorm_radius"], dust_param["lognorm_sigma"]) ) n_grains = ( dust_param["lognorm_ext"] / cross_tmp / 2.5 / np.log10(np.exp(1.0)) ) elif "powerlaw_ext" in dust_param: cross_tmp = self.cross_sections["Generic/Bessell.V"]( (10.0 ** dust_param["powerlaw_max"], dust_param["powerlaw_exp"]) ) n_grains = ( dust_param["powerlaw_ext"] / cross_tmp / 2.5 / np.log10(np.exp(1.0)) ) for i, obj_item in enumerate(self.objphot): # Get filter name phot_filter = self.modelphot[i].filter_name # Shortcut for weight weight = self.weights[phot_filter] if self.model == "planck": readplanck = ReadPlanck(filter_name=phot_filter) phot_flux = readplanck.get_flux(param_dict, synphot=self.modelphot[i])[ 0 ] elif self.model == "powerlaw": powerl_box = powerlaw_spectrum( self.modelphot[i].wavel_range, param_dict ) phot_flux = self.modelphot[i].spectrum_to_flux( powerl_box.wavelength, powerl_box.flux )[0] else: if self.binary: # Star 0 param_0 = binary_to_single(param_dict, 0) phot_flux_0 = self.modelphot[i].spectrum_interp( list(param_0.values()) )[0][0] # Scale the spectrum by (radius/distance)^2 if "radius" in self.modelpar: phot_flux_0 *= flux_scaling phot_flux_0 += flux_offset elif "radius_0" in self.modelpar: phot_flux_0 *= flux_scaling_0 phot_flux_0 += flux_offset # Star 1 param_1 = binary_to_single(param_dict, 1) phot_flux_1 = self.modelphot[i].spectrum_interp( list(param_1.values()) )[0][0] # Scale the spectrum by (radius/distance)^2 if "radius" in self.modelpar: phot_flux_1 *= flux_scaling phot_flux_1 += flux_offset elif "radius_1" in self.modelpar: phot_flux_1 *= flux_scaling_1 phot_flux_1 += flux_offset # Weighted flux of two spectra for atmospheric asymmetries # Or simply the same in case of an actual binary system if "spec_weight" in self.cube_index: phot_flux = ( params[self.cube_index["spec_weight"]] * phot_flux_0 + (1.0 - params[self.cube_index["spec_weight"]]) * phot_flux_1 ) else: phot_flux = phot_flux_0 + phot_flux_1 else: phot_flux = self.modelphot[i].spectrum_interp( list(param_dict.values()) )[0][0] phot_flux *= flux_scaling phot_flux += flux_offset # Add blackbody flux from disk components if self.n_disk == 1: phot_tmp = self.diskphot[i].spectrum_interp([disk_param["teff"]])[0][0] phot_flux += ( phot_tmp * (disk_param["radius"] * constants.R_JUP) ** 2 / (1e3 * constants.PARSEC / parallax) ** 2 ) elif self.n_disk > 1: for disk_idx in range(self.n_disk): phot_tmp = self.diskphot[i].spectrum_interp( [disk_param[f"teff_{disk_idx}"]] )[0][0] phot_flux += ( phot_tmp * (disk_param[f"radius_{disk_idx}"] * constants.R_JUP) ** 2 / (1e3 * constants.PARSEC / parallax) ** 2 ) # Apply extinction if "lognorm_ext" in dust_param: cross_tmp = self.cross_sections[phot_filter]( (10.0 ** dust_param["lognorm_radius"], dust_param["lognorm_sigma"]) ) phot_flux *= np.exp(-cross_tmp * n_grains) elif "powerlaw_ext" in dust_param: cross_tmp = self.cross_sections[phot_filter]( (10.0 ** dust_param["powerlaw_max"], dust_param["powerlaw_exp"]) ) phot_flux *= np.exp(-cross_tmp * n_grains) elif "ism_ext" in dust_param: read_filt = ReadFilter(phot_filter) phot_wavel = np.array([read_filt.mean_wavelength()]) ism_reddening = dust_param.get("ism_red", 3.1) ext_filt = ism_extinction( dust_param["ism_ext"], ism_reddening, phot_wavel ) phot_flux *= 10.0 ** (-0.4 * ext_filt[0]) elif self.ext_filter is not None: readmodel = ReadModel(self.model, filter_name=phot_filter) param_dict[f"phot_ext_{self.ext_filter}"] = dust_param[ f"phot_ext_{self.ext_filter}" ] param_dict["ism_red"] = dust_param.get("ism_red", 3.1) phot_flux = readmodel.get_flux(param_dict)[0] phot_flux *= flux_scaling phot_flux += flux_offset del param_dict[f"phot_ext_{self.ext_filter}"] del param_dict["ism_red"] if obj_item.ndim == 1: phot_var = obj_item[1] ** 2 # Get the telescope/instrument name instr_check = phot_filter.split(".")[0] if phot_filter in phot_scaling: # Inflate photometric uncertainty for filter # Scale relative to the uncertainty phot_var += phot_scaling[phot_filter] ** 2 * obj_item[1] ** 2 elif instr_check in phot_scaling: # Inflate photometric uncertainty for instrument # Scale relative to the uncertainty phot_var += phot_scaling[instr_check] ** 2 * obj_item[1] ** 2 ln_like += -0.5 * weight * (obj_item[0] - phot_flux) ** 2 / phot_var # Only required when fitting an error inflation ln_like += -0.5 * np.log(2.0 * np.pi * phot_var) else: for j in range(obj_item.shape[1]): phot_var = obj_item[1, j] ** 2 # Get the telescope/instrument name instr_check = phot_filter.split(".")[0] if phot_filter in phot_scaling: # Inflate photometric uncertainty for filter # Scale relative to the uncertainty phot_var += phot_scaling[phot_filter] ** 2 * obj_item[1, j] ** 2 elif instr_check in phot_scaling: # Inflate photometric uncertainty for instrument # Scale relative to the uncertainty phot_var += phot_scaling[instr_check] ** 2 * obj_item[1, j] ** 2 ln_like += ( -0.5 * weight * (obj_item[0, j] - phot_flux) ** 2 / phot_var ) # Only required when fitting an error inflation ln_like += -0.5 * np.log(2.0 * np.pi * phot_var) for i, item in enumerate(self.spectrum.keys()): # Calculate or interpolate the model spectrum # Shortcut for the weight weight = self.weights[item] if self.model == "planck": # Calculate a blackbody spectrum readplanck = ReadPlanck( ( 0.9 * self.spectrum[item][0][0, 0], 1.1 * self.spectrum[item][0][-1, 0], ) ) model_box = readplanck.get_spectrum(param_dict, spec_res=1000.0) # Resample the spectrum to the observed wavelengths model_flux = spectres.spectres( self.spectrum[item][0][:, 0], model_box.wavelength, model_box.flux ) else: # Interpolate the model spectrum from the grid if self.binary: # Star 1 param_0 = binary_to_single(param_dict, 0) model_flux_0 = self.modelspec[i].spectrum_interp( list(param_0.values()) )[0, :] # Scale the spectrum by (radius/distance)^2 if "radius" in self.modelpar: model_flux_0 *= flux_scaling model_flux_0 += flux_offset elif "radius_1" in self.modelpar: model_flux_0 *= flux_scaling_0 model_flux_0 += flux_offset # Star 2 param_1 = binary_to_single(param_dict, 1) model_flux_1 = self.modelspec[i].spectrum_interp( list(param_1.values()) )[0, :] # Scale the spectrum by (radius/distance)^2 if "radius" in self.modelpar: model_flux_1 *= flux_scaling model_flux_1 += flux_offset elif "radius_1" in self.modelpar: model_flux_1 *= flux_scaling_1 model_flux_1 += flux_offset # Weighted flux of two spectra for atmospheric asymmetries # Or simply the same in case of an actual binary system if "spec_weight" in self.cube_index: model_flux = ( params[self.cube_index["spec_weight"]] * model_flux_0 + (1.0 - params[self.cube_index["spec_weight"]]) * model_flux_1 ) else: model_flux = model_flux_0 + model_flux_1 else: model_flux = self.modelspec[i].spectrum_interp( list(param_dict.values()) )[0, :] # Scale the spectrum by (radius/distance)^2 model_flux *= flux_scaling model_flux += flux_offset # Veiling if ( "veil_a" in veil_param and "veil_b" in veil_param and "veil_ref" in veil_param ): if item == "MUSE": lambda_ref = 0.5 # (um) veil_flux = veil_param["veil_ref"] + veil_param["veil_b"] * ( self.spectrum[item][0][:, 0] - lambda_ref ) model_flux = veil_param["veil_a"] * model_flux + veil_flux # Scale the spectrum data data_flux = spec_scaling[item] * self.spectrum[item][0][:, 1] # Apply radial velocity shift if item in rad_vel: wavel_shift = ( rad_vel[item] * 1e3 * self.spectrum[item][0][:, 0] / constants.LIGHT ) spec_interp = interpolate.interp1d( self.spectrum[item][0][:, 0] + wavel_shift, model_flux, fill_value="extrapolate", ) model_flux = spec_interp(self.spectrum[item][0][:, 0]) # Apply rotational broadening if "vsini" in self.modelpar: spec_interp = interpolate.interp1d( self.spectrum[item][0][:, 0], model_flux ) wavel_new = np.linspace( self.spectrum[item][0][0, 0], self.spectrum[item][0][-1, 0], 2 * self.spectrum[item][0].shape[0], ) flux_broad = fastRotBroad( wvl=wavel_new, flux=spec_interp(wavel_new), epsilon=0.0, vsini=params[self.cube_index["vsini"]], effWvl=None, ) spec_interp = interpolate.interp1d(wavel_new, flux_broad) model_flux = spec_interp(self.spectrum[item][0][:, 0]) if err_scaling[item] is None: # Variance without error inflation data_var = self.spectrum[item][0][:, 2] ** 2 else: # Variance with error inflation (see Piette & Madhusudhan 2020) data_var = ( self.spectrum[item][0][:, 2] ** 2 + (err_scaling[item] * model_flux) ** 2 ) if self.spectrum[item][2] is not None: # The inverted covariance matrix is available if err_scaling[item] is None: # Use the inverted covariance matrix directly data_cov_inv = self.spectrum[item][2] else: # Ratio of the inflated and original uncertainties sigma_ratio = np.sqrt(data_var) / self.spectrum[item][0][:, 2] sigma_j, sigma_i = np.meshgrid(sigma_ratio, sigma_ratio) # Calculate the inverted matrix of the inflated covariances data_cov_inv = np.linalg.inv( self.spectrum[item][1] * sigma_i * sigma_j ) # Add blackbody flux from disk components if self.n_disk == 1: model_tmp = self.diskspec[i].spectrum_interp([disk_param["teff"]])[0, :] model_tmp *= (disk_param["radius"] * constants.R_JUP) ** 2 / ( 1e3 * constants.PARSEC / parallax ) ** 2 model_flux += model_tmp elif self.n_disk > 1: for disk_idx in range(self.n_disk): model_tmp = self.diskspec[i].spectrum_interp( [disk_param[f"teff_{disk_idx}"]] )[0, :] model_tmp *= ( disk_param[f"radius_{disk_idx}"] * constants.R_JUP ) ** 2 / (1e3 * constants.PARSEC / parallax) ** 2 model_flux += model_tmp # Apply extinction if "lognorm_ext" in dust_param: cross_tmp = self.cross_sections["spectrum"]( ( self.spectrum[item][0][:, 0], 10.0 ** dust_param["lognorm_radius"], dust_param["lognorm_sigma"], ) ) model_flux *= np.exp(-cross_tmp * n_grains) elif "powerlaw_ext" in dust_param: cross_tmp = self.cross_sections["spectrum"]( ( self.spectrum[item][0][:, 0], 10.0 ** dust_param["powerlaw_max"], dust_param["powerlaw_exp"], ) ) model_flux *= np.exp(-cross_tmp * n_grains) elif "ism_ext" in dust_param: ism_reddening = dust_param.get("ism_red", 3.1) ext_spec = ism_extinction( dust_param["ism_ext"], ism_reddening, self.spectrum[item][0][:, 0] ) model_flux *= 10.0 ** (-0.4 * ext_spec) elif self.ext_filter is not None: ism_reddening = dust_param.get("ism_red", 3.1) av_required = convert_to_av( filter_name=self.ext_filter, filter_ext=dust_param[f"phot_ext_{self.ext_filter}"], v_band_red=ism_reddening, ) ext_spec = ism_extinction( av_required, ism_reddening, self.spectrum[item][0][:, 0] ) model_flux *= 10.0 ** (-0.4 * ext_spec) # Calculate the likelihood if self.spectrum[item][2] is not None: # Use the inverted covariance matrix ln_like += -0.5 * np.dot( weight * (data_flux - model_flux), np.dot(data_cov_inv, data_flux - model_flux), ) ln_like += -0.5 * np.nansum(np.log(2.0 * np.pi * data_var)) else: if item in self.fit_corr: # Covariance model (Wang et al. 2020) wavel = self.spectrum[item][0][:, 0] # (um) wavel_j, wavel_i = np.meshgrid(wavel, wavel) error = np.sqrt(data_var) # (W m-2 um-1) error_j, error_i = np.meshgrid(error, error) cov_matrix = ( corr_amp[item] ** 2 * error_i * error_j * np.exp( -((wavel_i - wavel_j) ** 2) / (2.0 * corr_len[item] ** 2) ) + (1.0 - corr_amp[item] ** 2) * np.eye(wavel.shape[0]) * error_i**2 ) dot_tmp = np.dot( weight * (data_flux - model_flux), np.dot(np.linalg.inv(cov_matrix), data_flux - model_flux), ) ln_like += -0.5 * dot_tmp ln_like += -0.5 * np.nansum(np.log(2.0 * np.pi * data_var)) else: # Calculate the chi-square without a covariance matrix chi_sq = -0.5 * weight * (data_flux - model_flux) ** 2 / data_var chi_sq += -0.5 * np.log(2.0 * np.pi * data_var) ln_like += np.nansum(chi_sq) return ln_like
[docs] @typechecked def run_multinest( self, tag: str, n_live_points: int = 1000, resume: bool = False, output: str = "multinest/", kwargs_multinest: Optional[dict] = None, **kwargs, ) -> None: """ Function to run the ``PyMultiNest`` wrapper of the ``MultiNest`` sampler. While ``PyMultiNest`` can be installed with ``pip`` from the PyPI repository, ``MultiNest`` has to to be build manually. See the `PyMultiNest documentation <http://johannesbuchner. github.io/PyMultiNest/install.html>`_. The library path of ``MultiNest`` should be set to the environmental variable ``LD_LIBRARY_PATH`` on a Linux machine and ``DYLD_LIBRARY_PATH`` on a Mac. Alternatively, the variable can be set before importing the ``species`` package, for example: .. code-block:: python >>> import os >>> os.environ['DYLD_LIBRARY_PATH'] = '/path/to/MultiNest/lib' >>> import species Parameters ---------- tag : str Database tag where the samples will be stored. n_live_points : int Number of live points. resume : bool Resume the posterior sampling from a previous run. output : str Path that is used for the output files from MultiNest. kwargs_multinest : dict, None Dictionary with keyword arguments that can be used to adjust the parameters of the `run() function <https://github.com/JohannesBuchner/PyMultiNest/blob/ master/pymultinest/run.py>`_ of the ``PyMultiNest`` sampler. See also the `documentation of MultiNest <https://github.com/JohannesBuchner/MultiNest>`_. Returns ------- NoneType None """ print_section("Nested sampling with MultiNest") print(f"Database tag: {tag}") print(f"Number of live points: {n_live_points}") print(f"Resume previous fit: {resume}") print(f"Output folder: {output}") print() # Set attributes if "prior" in kwargs: warnings.warn( "The 'prior' parameter has been deprecated " "and will be removed in a future release. " "Please use the 'normal_prior' of FitModel " "instead.", DeprecationWarning, ) if kwargs["prior"] is not None: self.normal_prior = kwargs["prior"] # Create empty dictionary if needed if kwargs_multinest is None: kwargs_multinest = {} # Check kwargs_multinest keywords if "n_live_points" in kwargs_multinest: warnings.warn( "Please specify the number of live points " "as argument of 'n_live_points' instead " "of using 'kwargs_multinest'." ) del kwargs_multinest["n_live_points"] if "resume" in kwargs_multinest: warnings.warn( "Please use the 'resume' parameter " "instead of setting the value with " "'kwargs_multinest'." ) del kwargs_multinest["resume"] if "outputfiles_basename" in kwargs_multinest: warnings.warn( "Please use the 'output' parameter " "instead of setting the value of " "'outputfiles_basename' in " "'kwargs_multinest'." ) del kwargs_multinest["outputfiles_basename"] # Get the MPI rank of the process try: from mpi4py import MPI mpi_rank = MPI.COMM_WORLD.Get_rank() except ModuleNotFoundError: mpi_rank = 0 # Create the output folder if required if mpi_rank == 0 and not os.path.exists(output): os.mkdir(output) @typechecked def _lnprior_multinest(cube, n_dim: int, n_param: int) -> None: """ Function to transform the unit cube into the parameter cube. It is not clear how to pass additional arguments to the function, therefore it is placed here. Parameters ---------- cube : LP_c_double Unit cube. n_dim : int Number of dimensions. n_param : int Number of parameters. Returns ------- NoneType None """ self._prior_transform(cube, self.bounds, self.cube_index) @typechecked def _lnlike_multinest( params, n_dim: int, n_param: int ) -> Union[float, np.float64]: """ Function for return the log-likelihood for the sampled parameter cube. Parameters ---------- params : LP_c_double Cube with sampled model parameters. n_dim : int Number of dimensions. This parameter is mandatory but not used by the function. n_param : int Number of parameters. This parameter is mandatory but not used by the function. Returns ------- float Log-likelihood. """ return self._lnlike_func(params) pymultinest.run( _lnlike_multinest, _lnprior_multinest, len(self.modelpar), outputfiles_basename=output, resume=resume, n_live_points=n_live_points, **kwargs_multinest, ) # Create the Analyzer object analyzer = pymultinest.analyse.Analyzer( len(self.modelpar), outputfiles_basename=output ) # Get a dictionary with the ln(Z) and its errors, the # individual modes and their parameters quantiles of # the parameter posteriors sampling_stats = analyzer.get_stats() # Nested sampling global log-evidence ln_z = sampling_stats["nested sampling global log-evidence"] ln_z_error = sampling_stats["nested sampling global log-evidence error"] print(f"\nNested sampling global log-evidence: {ln_z:.2f} +/- {ln_z_error:.2f}") # Nested sampling global log-evidence ln_z = sampling_stats["nested importance sampling global log-evidence"] ln_z_error = sampling_stats[ "nested importance sampling global log-evidence error" ] print( f"Nested importance sampling global log-evidence: {ln_z:.2f} +/- {ln_z_error:.2f}" ) # Get the best-fit (highest likelihood) point print("\nSample with the highest probability:") best_params = analyzer.get_best_fit() max_lnlike = best_params["log_likelihood"] print(f" - Log-likelihood = {max_lnlike:.2f}") for i, item in enumerate(best_params["parameters"]): if -0.1 < item < 0.1: print(f" - {self.modelpar[i]} = {item:.2e}") else: print(f" - {self.modelpar[i]} = {item:.2f}") # Get the posterior samples samples = analyzer.get_equal_weighted_posterior() spec_labels = [] for item in self.spectrum: if f"scaling_{item}" in self.bounds: spec_labels.append(f"scaling_{item}") ln_prob = samples[:, -1] samples = samples[:, :-1] # Adding the fixed parameters to the samples for key, value in self.fix_param.items(): self.modelpar.append(key) app_param = np.full(samples.shape[0], value) app_param = app_param[..., np.newaxis] samples = np.append(samples, app_param, axis=1) # Dictionary with attributes that will be stored attr_dict = { "spec_type": "model", "spec_name": self.model, "ln_evidence": (ln_z, ln_z_error), "parallax": self.obj_parallax[0], } if self.ext_filter is not None: attr_dict["ext_filter"] = self.ext_filter # Get the MPI rank of the process try: from mpi4py import MPI mpi_rank = MPI.COMM_WORLD.Get_rank() except ModuleNotFoundError: mpi_rank = 0 # Add samples to the database if mpi_rank == 0: # Writing the samples to the database is only # possible when using a single process from species.data.database import Database species_db = Database() species_db.add_samples( sampler="multinest", samples=samples, ln_prob=ln_prob, tag=tag, modelpar=self.modelpar, bounds=self.bounds, normal_prior=self.normal_prior, spec_labels=spec_labels, attr_dict=attr_dict, )
[docs] @typechecked def run_ultranest( self, tag: str, min_num_live_points: int = 400, resume: Union[bool, str] = False, output: str = "ultranest/", kwargs_ultranest: Optional[dict] = None, **kwargs, ) -> None: """ Function to run ``UltraNest`` for estimating the posterior distributions of model parameters and computing the marginalized likelihood (i.e. "evidence"). Parameters ---------- tag : str Database tag where the samples will be stored. min_num_live_points : int Minimum number of live points. The default of 400 is a `reasonable number <https://johannesbuchner.github.io/ UltraNest/issues.html>`_. In principle, choosing a very low number allows nested sampling to make very few iterations and go to the peak quickly. However, the space will be poorly sampled, giving a large region and thus low efficiency, and potentially not seeing interesting modes. Therefore, a value above 100 is typically useful. resume : bool, str Resume the posterior sampling from a previous run. The ``UltraNest`` documentation provides a description of the `possible arguments <https://johannesbuchner.github.io/ UltraNest/ultranest.html#ultranest.integrator. ReactiveNestedSampler>`_ (``True``, ``'resume'``, ``'resume-similar'``, ``'overwrite'``, ``'subfolder'``). Setting the argument to ``False`` is identical to ``'subfolder'``. kwargs_ultranest : dict, None Dictionary with keyword arguments that can be used to adjust the parameters of the `run() method <https://johannesbuchner.github.io/UltraNest/ultranest .html#ultranest.integrator.ReactiveNestedSampler.run>`_ of the ``UltraNest`` sampler. output : str Path that is used for the output files from ``UltraNest``. Returns ------- NoneType None """ print_section("Nested sampling with UltraNest") print(f"Database tag: {tag}") print(f"Minimum number of live points: {min_num_live_points}") print(f"Resume previous fit: {resume}") print(f"Output folder: {output}") print() # Check if resume is set to a non-UltraNest value if isinstance(resume, bool) and not resume: resume = "subfolder" # Set attributes if "prior" in kwargs: warnings.warn( "The 'prior' parameter has been deprecated " "and will be removed in a future release. " "Please use the 'normal_prior' of FitModel " "instead.", DeprecationWarning, ) if kwargs["prior"] is not None: self.normal_prior = kwargs["prior"] # Create empty dictionary if needed if kwargs_ultranest is None: kwargs_ultranest = {} # Get the MPI rank of the process try: from mpi4py import MPI mpi_rank = MPI.COMM_WORLD.Get_rank() except ModuleNotFoundError: mpi_rank = 0 # Create the output folder if required if mpi_rank == 0 and not os.path.exists(output): os.mkdir(output) @typechecked def _lnprior_ultranest(cube: np.ndarray) -> np.ndarray: """ Function to transform the unit cube into the parameter cube. It is not clear how to pass additional arguments to the function, therefore it is placed here. Parameters ---------- cube : np.ndarray Unit cube. Returns ------- np.ndarray Cube with the sampled model parameters. """ return self._prior_transform(cube, self.bounds, self.cube_index) @typechecked def _lnlike_ultranest(params: np.ndarray) -> Union[float, np.float64]: """ Function for returning the log-likelihood for the sampled parameter cube. Parameters ---------- params : np.ndarray Array with sampled model parameters. Returns ------- float Log-likelihood. """ ln_like = self._lnlike_func(params) if not np.isfinite(ln_like): # UltraNest can not handle np.inf in the likelihood ln_like = -1e100 return ln_like sampler = ultranest.ReactiveNestedSampler( self.modelpar, _lnlike_ultranest, transform=_lnprior_ultranest, resume=resume, log_dir=output, ) if "show_status" not in kwargs_ultranest: kwargs_ultranest["show_status"] = True if "viz_callback" not in kwargs_ultranest: kwargs_ultranest["viz_callback"] = False if "min_num_live_points" in kwargs_ultranest: warnings.warn( "Please specify the minimum number of live " "points as argument of 'min_num_live_points' " "instead of using 'kwargs_ultranest'." ) del kwargs_ultranest["min_num_live_points"] result = sampler.run( min_num_live_points=min_num_live_points, **kwargs_ultranest ) # Log-evidence ln_z = result["logz"] ln_z_error = result["logzerr"] print(f"\nLog-evidence = {ln_z:.2f} +/- {ln_z_error:.2f}") # Best-fit parameters print("\nBest-fit parameters (mean +/- sigma):") for i, item in enumerate(self.modelpar): mean = np.mean(result["samples"][:, i]) sigma = np.std(result["samples"][:, i]) print(f" - {item} = {mean:.2e} +/- {sigma:.2e}") # Get the best-fit (highest likelihood) point max_lnlike = result["maximum_likelihood"]["logl"] print("\nSample with the highest probability:") print(f" - Log-likelihood = {max_lnlike:.2f}") for i, item in enumerate(result["maximum_likelihood"]["point"]): if -0.1 < item < 0.1: print(f" - {self.modelpar[i]} = {item:.2e}") else: print(f" - {self.modelpar[i]} = {item:.2f}") # Create a list with scaling labels spec_labels = [] for item in self.spectrum: if f"scaling_{item}" in self.bounds: spec_labels.append(f"scaling_{item}") # Posterior samples samples = result["samples"] # Log-likelihood ln_prob = result["weighted_samples"]["logl"] # Adding the fixed parameters to the samples for key, value in self.fix_param.items(): self.modelpar.append(key) app_param = np.full(samples.shape[0], value) app_param = app_param[..., np.newaxis] samples = np.append(samples, app_param, axis=1) # Dictionary with attributes that will be stored attr_dict = { "spec_type": "model", "spec_name": self.model, "ln_evidence": (ln_z, ln_z_error), "parallax": self.obj_parallax[0], } if self.ext_filter is not None: attr_dict["ext_filter"] = self.ext_filter # Get the MPI rank of the process try: from mpi4py import MPI mpi_rank = MPI.COMM_WORLD.Get_rank() except ModuleNotFoundError: mpi_rank = 0 # Add samples to the database if mpi_rank == 0: # Writing the samples to the database is only # possible when using a single process from species.data.database import Database species_db = Database() species_db.add_samples( sampler="ultranest", samples=samples, ln_prob=ln_prob, tag=tag, modelpar=self.modelpar, bounds=self.bounds, normal_prior=self.normal_prior, spec_labels=spec_labels, attr_dict=attr_dict, )
[docs] @typechecked def run_dynesty( self, tag: str, n_live_points: int = 2000, resume: bool = False, output: str = "dynesty/", evidence_tolerance: float = 0.5, dynamic: bool = False, sample_method: str = "auto", bound: str = "multi", n_pool: Optional[int] = None, mpi_pool: bool = False, ) -> None: """ Function for running the atmospheric retrieval. The parameter estimation and computation of the marginalized likelihood (i.e. model evidence), is done with ``Dynesty``. When using MPI, it is also required to install ``mpi4py`` (e.g. ``pip install mpi4py``), otherwise an error may occur when the ``output_folder`` is created by multiple processes. Parameters ---------- tag : str Database tag where the samples will be stored. n_live_points : int Number of live points used by the nested sampling with ``Dynesty``. resume : bool Resume the posterior sampling from a previous run. output : str Path that is used for the output files from ``Dynesty``. evidence_tolerance : float The dlogZ value used to terminate a nested sampling run, or the initial dlogZ value passed to a dynamic nested sampling run. dynamic : bool Whether to use static or dynamic nested sampling (see `Dynesty documentation <https://dynesty.readthedocs.io/ en/stable/dynamic.html>`_). sample_method : str The sampling method that should be used ('auto', 'unif', 'rwalk', 'slice', 'rslice' (see `sampling documentation <https://dynesty.readthedocs.io/en/stable/ quickstart.html#nested-sampling-with-dynesty>`_). bound : str Method used to approximately bound the prior using the current set of live points ('none', 'single', 'multi', 'balls', 'cubes'). `Conditions the sampling methods <https://dynesty.readthedocs.io/en/stable/ quickstart.html#nested-sampling-with-dynesty>`_ used to propose new live points n_pool : int The number of processes for the local multiprocessing. The parameter is not used when the argument is set to ``None``. mpi_pool : bool Distribute the workers to an ``MPIPool`` on a cluster, using ``schwimmbad``. Returns ------- NoneType None """ print_section("Nested sampling with Dynesty") print(f"Database tag: {tag}") print(f"Number of live points: {n_live_points}") print(f"Resume previous fit: {resume}") # Get the MPI rank of the process try: from mpi4py import MPI mpi_rank = MPI.COMM_WORLD.Get_rank() except ModuleNotFoundError: mpi_rank = 0 # Create the output folder if required if mpi_rank == 0 and not os.path.exists(output): print(f"Creating output folder: {output}") os.mkdir(output) else: print(f"Output folder: {output}") print() out_basename = os.path.join(output, "retrieval_") if not mpi_pool: if n_pool is not None: with dynesty.pool.Pool( n_pool, self._lnlike_func, self._prior_transform, ptform_args=[self.bounds, self.cube_index], ) as pool: print(f"Initialized a Dynesty.pool with {n_pool} workers") if dynamic: if resume: dsampler = dynesty.DynamicNestedSampler.restore( fname=out_basename + "dynesty.save", pool=pool, ) print( "Resumed a Dynesty run from " f"{out_basename}dynesty.save" ) else: dsampler = dynesty.DynamicNestedSampler( loglikelihood=pool.loglike, prior_transform=pool.prior_transform, ndim=len(self.modelpar), pool=pool, sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz_init=evidence_tolerance, nlive_init=n_live_points, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) else: if resume: dsampler = dynesty.NestedSampler.restore( fname=out_basename + "dynesty.save", pool=pool, ) print( "Resumed a Dynesty run from " f"{out_basename}dynesty.save" ) else: dsampler = dynesty.NestedSampler( loglikelihood=pool.loglike, prior_transform=pool.prior_transform, ndim=len(self.modelpar), pool=pool, nlive=n_live_points, sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz=evidence_tolerance, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) else: if dynamic: if resume: dsampler = dynesty.DynamicNestedSampler.restore( fname=out_basename + "dynesty.save" ) print(f"Resumed a Dynesty run from {out_basename}dynesty.save") else: dsampler = dynesty.DynamicNestedSampler( loglikelihood=self._lnlike_func, prior_transform=self._prior_transform, ndim=len(self.modelpar), ptform_args=[self.bounds, self.cube_index], sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz_init=evidence_tolerance, nlive_init=n_live_points, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) else: if resume: dsampler = dynesty.NestedSampler.restore( fname=out_basename + "dynesty.save" ) print(f"Resumed a Dynesty run from {out_basename}dynesty.save") else: dsampler = dynesty.NestedSampler( loglikelihood=self._lnlike_func, prior_transform=self._prior_transform, ndim=len(self.modelpar), ptform_args=[self.bounds, self.cube_index], sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz=evidence_tolerance, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) else: pool = MPIPool() if not pool.is_master(): pool.wait() sys.exit(0) print("Created an MPIPool object.") if dynamic: if resume: dsampler = dynesty.DynamicNestedSampler.restore( fname=out_basename + "dynesty.save", pool=pool, ) else: dsampler = dynesty.DynamicNestedSampler( loglikelihood=self._lnlike_func, prior_transform=self._prior_transform, ndim=len(self.modelpar), ptform_args=[self.bounds, self.cube_index], pool=pool, sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz_init=evidence_tolerance, nlive_init=n_live_points, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) else: if resume: dsampler = dynesty.NestedSampler.restore( fname=out_basename + "dynesty.save", pool=pool, ) else: dsampler = dynesty.NestedSampler( loglikelihood=self._lnlike_func, prior_transform=self._prior_transform, ndim=len(self.modelpar), ptform_args=[self.bounds, self.cube_index], pool=pool, nlive=n_live_points, sample=sample_method, bound=bound, ) dsampler.run_nested( dlogz=evidence_tolerance, checkpoint_file=out_basename + "dynesty.save", resume=resume, ) results = dsampler.results samples = results.samples_equal() ln_prob = results.logl print(f"\nSamples shape: {samples.shape}") print(f"Number of iterations: {results.niter}") out_file = out_basename + "post_equal_weights.dat" print(f"Storing samples: {out_file}") np.savetxt(out_file, np.c_[samples, ln_prob]) # Nested sampling global log-evidence # TODO check if selecting the last index is correct ln_z = results.logz[-1] ln_z_error = results.logzerr[-1] print(f"\nNested sampling log-evidence: {ln_z:.2f} +/- {ln_z_error:.2f}") # Get the best-fit (highest likelihood) point max_idx = np.argmax(ln_prob) max_lnlike = ln_prob[max_idx] best_params = samples[max_idx] print("\nSample with the highest probability:") print(f" - Log-likelihood = {max_lnlike:.2f}") for i, item in enumerate(self.modelpar): if -0.1 < best_params[i] < 0.1: print(f" - {self.modelpar[i]} = {best_params[i]:.2e}") else: print(f" - {self.modelpar[i]} = {best_params[i]:.2f}") spec_labels = [] for item in self.spectrum: if f"scaling_{item}" in self.bounds: spec_labels.append(f"scaling_{item}") # Adding the fixed parameters to the samples for key, value in self.fix_param.items(): self.modelpar.append(key) app_param = np.full(samples.shape[0], value) app_param = app_param[..., np.newaxis] samples = np.append(samples, app_param, axis=1) # Dictionary with attributes that will be stored attr_dict = { "spec_type": "model", "spec_name": self.model, "ln_evidence": (ln_z, ln_z_error), "parallax": self.obj_parallax[0], } if self.ext_filter is not None: attr_dict["ext_filter"] = self.ext_filter # Add samples to the database if mpi_rank == 0: # Writing the samples to the database is only # possible when using a single process from species.data.database import Database species_db = Database() species_db.add_samples( sampler="dynesty", samples=samples, ln_prob=ln_prob, tag=tag, modelpar=self.modelpar, bounds=self.bounds, normal_prior=self.normal_prior, spec_labels=spec_labels, attr_dict=attr_dict, )